Formins: emerging players in the dynamic plant cell cortex

. 2012 ; 2012 () : 712605. [epub] 20120926

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid24278734

Formins (FH2 proteins) are an evolutionarily conserved family of eukaryotic proteins, sharing the common FH2 domain. While they have been, until recently, understood mainly as actin nucleators, formins are also engaged in various additional aspects of cytoskeletal organization and signaling, including, but not limited to, the crosstalk between the actin and microtubule networks. A surprising diversity of domain organizations has been discovered among the FH2 proteins, and specific domain setups have been found in plants. Seed plants have two clades of formins, one of them (Class I) containing mostly transmembrane proteins, while members of the other one (Class II) may be anchored to membranes via a putative membrane-binding domain related to the PTEN antioncogene. Thus, plant formins present good candidates for possible mediators of coordination of the cortical actin and microtubule cytoskeletons, as well as their attachment to the plasma membrane, that is, aspects of cell cortex organization likely to be important for cell and tissue morphogenesis. Although experimental studies of plant formin function are hampered by the large number of formin genes and their functional redundancy, recent experimental work has already resulted in some remarkable insights into the function of FH2 proteins in plants.

Zobrazit více v PubMed

Mathur J. Cell shape development in plants. Trends in Plant Science. 2004;9(12):583–590. PubMed

Mathur J. Conservation of boundary extension mechanisms between plants and animals. Journal of Cell Biology. 2005;168(5):679–682. PubMed PMC

Boutté Y, Crosnier MT, Carraro N, Traas J, Satiat-Jeunemaitre B. The plasma membrane recycling pathway and cell polarity in plants: studies on PIN proteins. Journal of Cell Science. 2006;119(7):1255–1265. PubMed

Geldner N, Friml J, Stierhof YD, Jürgens G, Palme K. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature. 2001;413(6854):425–428. PubMed

Petrášek J, Černá A, Schwarzerová K, Elčkner M, Morris DA, Zažímalová E. Do phytotropins inhibit auxin efflux by impairing vesicle traffic? Plant Physiology. 2003;131(1):254–263. PubMed PMC

Žárský V, Cvrčková F, Potocký M, Hála M. Exocytosis and cell polarity in plants—exocyst and recycling domains: tansley review. New Phytologist. 2009;183(2):255–272. PubMed

Wasteneys GO. Progress in understanding the role of microtubules in plant cells. Current Opinion in Plant Biology. 2004;7(6):651–660. PubMed

Takahashi H, Hirota K, Kawahara A, Hayakawa E, Inoue Y. Randomization of cortical microtubules in root epidermal cells induces root hair initiation in lettuce (Lactuca sativa L.) seedlings. Plant and Cell Physiology. 2003;44(3):350–359. PubMed

Sieberer BJ, Timmers ACJ, Lhuissier FGP, Emons AMC. Endoplasmic microtubules configure the subapical cytoplasm and are required for fast growth of Medicago truncatula root hairs. Plant Physiology. 2002;130(2):977–988. PubMed PMC

Morejohn LC, Bureau TE, Molè-Bajer J, Bajer AS, Fosket DE. Oryzalin, a dinitroaniline herbicide, binds to plant tubulin and inhibits microtubule polymerization in vitro. Planta. 1987;172(2):252–264. PubMed

Sugimoto K, Himmelspach R, Williamson RE, Wasteneys GO. Mutation or drug-dependent microtubule disruption causes radial swelling without altering parallel cellulose microfibril deposition in Arabidopsis root cells. Plant Cell. 2003;15(6):1414–1429. PubMed PMC

Baskin TI, Beemster GTS, Judy-March JE, Marga F. Disorganization of cortical microtubules stimulates tangential expansion and reduces the uniformity of cellulose microfibril alignment among cells in the root of Arabidopsis . Plant Physiology. 2004;135(4):2279–2290. PubMed PMC

Lindeboom J, Mulder BM, Vos JW, Ketelaar T, Emons AMC. Cellulose microfibril deposition: coordinated activity at the plant plasma membrane. Journal of Microscopy. 2008;231(2):192–200. PubMed

Sieberer BJ, Ketelaar T, Esseling JJ, Emons AMC. Microtubules guide root hair tip growth. New Phytologist. 2005;167(3):711–719. PubMed

Bao Y, Kost B, Chua NH. Reduced expression of α-tubulin genes in Arabidopsis thaliana specifically affects root growth and morphology, root hair development and root gravitropism. Plant Journal. 2001;28(2):145–157. PubMed

Gossot O, Geitmann A. Pollen tube growth: coping with mechanical obstacles involves the cytoskeleton. Planta. 2007;226(2):405–416. PubMed

Potocký M, Eliáš M, Profotová B, Novotná Z, Valentová O, Žárský V. Phosphatidic acid produced by phospholipase D is required for tobacco pollen tube growth. Planta. 2003;217(1):122–130. PubMed

Huang S, An YQ, McDowell JM, McKinney EC, Meagher RB. The Arabidopsis ACT11 actin gene is strongly expressed in tissues of the emerging inflorescence, pollen, and developing ovules. Plant Molecular Biology. 1997;33(1):125–139. PubMed

Gilliland LU, Kandasamy MK, Pawloski LC, Meagher RB. Both vegetative and reproductive actin isovariants complement the stunted root hair phenotype of the Arabidopsis act2-1 mutation. Plant Physiology. 2002;130(4):2199–2209. PubMed PMC

Pawloski LC, Kandasamy MK, Meagher RB. The late pollen actins are essential for normal male and female development in Arabidopsis . Plant Molecular Biology. 2006;62(6):881–896. PubMed

Cvrčková F, Bezvoda R, Žárský V. Computational identification of root hair-specific genes in Arabidopsis . Plant Signaling and Behavior. 2010;5(11):1407–1418. PubMed PMC

Kandasamy MK, Gilliland LU, McKinney EC, Meagher RB. One plant actin isovariant, ACT7, is induced by auxin and required for normal callus formation. Plant Cell. 2001;13(7):1541–1554. PubMed PMC

Gilliland LU, Pawloski LC, Kandasamy MK, Meagher RB. Arabidopsis actin gene ACT7 plays an essential role in germination and root growth. Plant Journal. 2003;33(2):319–328. PubMed

Bannigan A, Wiedemeier AMD, Williamson RE, Overall RL, Baskin TI. Cortical microtubule arrays lose uniform alignment between cells and are oryzalin resistant in the Arabidopsis mutant, radially swollen 6. Plant and Cell Physiology. 2006;47(7):949–958. PubMed

Collings DA, Lill AW, Himmelspach R, Wasteneys GO. Hypersensitivity to cytoskeletal antagonists demonstrates microtubule—microfilament cross-talk in the control of root elongation in Arabidopsis thaliana . New Phytologist. 2006;170(2):275–290. PubMed

Schwab B, Mathur J, Saedler R, et al. Regulation of cell expansion by the DISTORTED genes in Arabidopsis thaliana: actin controls the spatial organization of microtubules. Molecular Genetics and Genomics. 2003;269(3):350–360. PubMed

Saedler R, Mathur N, Srinivas BP, Kernebeck B, Hülskamp M, Mathur J. Actin control over microtubules suggested by DISTORTED2 encoding the Arabidopsis ARPC2 subunit homolog. Plant and Cell Physiology. 2004;45(7):813–822. PubMed

Li S, Blanchoin L, Yang Z, Lord EM. The putative Arabidopsis Arp2/3 complex controls leaf cell morphogenesis. Plant Physiology. 2003;132(4):2034–2044. PubMed PMC

Le J, El-Assal SED, Basu D, Saad ME, Szymanski DB. Requirements for Arabidopsis ATARP2 and ATARP3 during epidermal development. Current Biology. 2003;13(15):1341–1347. PubMed

Mathur J, Mathur N, Kirik V, Kernebeck B, Srinivas BP, Hülskamp M. Arabidopsis crooked encodes for the smallest subunit of the ARP2/3 complex and controls cell shape by region specific fine F-actin formation. Development. 2003;130(14):3137–3146. PubMed

Mathur J, Mathur N, Kernebeck B, Hülskamp M. Mutations in actin-related proteins 2 and 3 affect cell shape development in Arabidopsis . Plant Cell. 2003;15(7):1632–1645. PubMed PMC

Perroud PF, Quatrano RS. The role of ARPC4 in tip growth and alignment of the polar axis in filaments of Physcomitrella patens . Cell Motility and the Cytoskeleton. 2006;63(3):162–171. PubMed

Finka A, Saidi Y, Goloubinoff P, Neuhaus JM, Zrÿd JP, Schaefer DG. The knock-out of ARP3a gene affects F-actin cytoskeleton organization altering cellular tip growth, morphology and development in moss Physcomitrella patens . Cell Motility and the Cytoskeleton. 2008;65(10):769–784. PubMed

Fišerová J, Schwarzerová K, Petrášek J, Opatrný Z. ARP2 and ARP3 are localized to sites of actin filament nucleation in tobacco BY-2 cells. Protoplasma. 2006;227(2-4):119–128. PubMed

Baluška F, Salaj J, Mathur J, et al. Root hair formation: F-actin-dependent tip growth is initiated by local assembly of profilin-supported F-actin meshworks accumulated within expansin-enriched bulges. Developmental Biology. 2000;227(2):618–632. PubMed

Ringli C, Baumberger N, Diet A, Frey B, Keller B. ACTIN2 is essential for bulge site selection and tip growth during root hair development of Arabidopsis . Plant Physiology. 2002;129(4):1464–1472. PubMed PMC

Ketelaar T, De Ruijter NCA, Emons AMC. Unstable F-actin specifies the area and microtubule direction of cell expansion in Arabidopsis root hairs. Plant Cell. 2003;15(1):285–292. PubMed PMC

Carol RJ, Dolan L. Building a hair: tip growth in Arabidopsis thaliana root hairs. Philosophical Transactions of the Royal Society B. 2002;357(1422):815–821. PubMed PMC

Ojangu EL, Järve K, Paves H, Truve E. Arabidopsis thaliana myosin XIK is involved in root hair as well as trichome morphogenesis on stems and leaves. Protoplasma. 2007;230(3-4):193–202. PubMed

Vidali L, McKenna ST, Hepler PK. Actin polymerization is essential for pollen tube growth. Molecular Biology of the Cell. 2001;12(8):2534–2545. PubMed PMC

Li Y, Zee SY, Liu YM, Huang BQ, Yen LF. Circular F-actin bundles and a G-actin gradient in pollen and pollen tubes of Lilium davidii . Planta. 2001;213(5):722–730. PubMed

Lovy-Wheeler A, Wilsen KL, Baskin TI, Hepler PK. Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent feature of the pollen tube. Planta. 2005;221(1):95–104. PubMed

Lenartowska M, Michalska A. Actin filament organization and polarity in pollen tubes revealed by myosin II subfragment 1 decoration. Planta. 2008;228(5):891–896. PubMed

Gibbon BC, Kovar DR, Staiger CJ. Latrunculin B has different effects on pollen germination and tube growth. Plant Cell. 1999;11(12):2349–2363. PubMed PMC

Chen T, Teng N, Wu X, et al. Disruption of actin filaments by latrunculin B affects cell wall construction in Picea meyeri pollen tube by disturbing vesicle trafficking. Plant and Cell Physiology. 2007;48(1):19–30. PubMed

Cárdenas L, Lovy-Wheeler A, Wilsen KL, Hepler PK. Actin polymerization promotes the reversal of streaming in the apex of pollen tubes. Cell Motility and the Cytoskeleton. 2005;61(2):112–127. PubMed

McFarlane HE, Young RE, Wasteneys GO, Samuels AL. Cortical microtubules mark the mucilage secretion domain of the plasma membrane in Arabidopsis seed coat cells. Planta. 2008;227(6):1363–1375. PubMed

Kleine-Vehn J, Dhonukshe P, Swarup R, Bennett M, Friml J. Subcellular trafficking of the Arabidopsis auxin influx carrier AUX1 uses a novel pathway distinct from PIN1. Plant Cell. 2006;18(11):3171–3181. PubMed PMC

Maisch J, Nick P. Actin is involved in auxin-dependent patterning. Plant Physiology. 2007;143(4):1695–1704. PubMed PMC

Dhonukshe P, Mathur J, Hülskamp M, Gadella TWJ. Microtubule plus-ends reveal essential links between intracellular polarization and localized modulation of endocytosis during division-plane establishment in plant cells. BMC Biology. 2005;3, article no. 11 PubMed PMC

Karahara I, Suda J, Tahara H, et al. The preprophase band is a localized center of clathrin-mediated endocytosis in late prophase cells of the onion cotyledon epidermis. Plant Journal. 2009;57(5):819–831. PubMed

Twell D, Park SK, Hawkins TJ, et al. MORI/GEM1 has an essential role in the plant-specific cytokinetic phragmoplast. Nature Cell Biology. 2002;4(9):711–714. PubMed PMC

Eleftheriou EP, Baskin TI, Hepler PK. Aberrant cell plate formation in the Arabidopsis thaliana microtubule organization 1 mutant. Plant and Cell Physiology. 2005;46(4):671–675. PubMed

Kawamura E, Himmelspach R, Rashbrooke MC, et al. MICROTUBULE ORGANIZATION 1 regulates structure and function of microtubule arrays during mitosis and cytokinesis in the Arabidopsis root. Plant Physiology. 2006;140(1):102–114. PubMed PMC

Hepler PK, Valster A, Molchan T, Vos JW. Roles for Kinesin and myosin during cytokinesis. Philosophical Transactions of the Royal Society B. 2002;357(1422):761–766. PubMed PMC

Seguí-Simarro JM, Austin JR, White EA, Staehelin LA. Electron tomographic analysis of somatic cell plate formation in meristematic cells of Arabidopsis preserved by high-pressure freezing. Plant Cell. 2004;16(4):836–856. PubMed PMC

Higaki T, Kutsuna N, Sano T, Hasezawa S. Quantitative analysis of changes in actin microfilament contribution to cell plate development in plant cytokinesis. BMC Plant Biology. 2008;8, article no. 80 PubMed PMC

Žárský V, Potocký M. Recycling domains in plant cell morphogenesis: small GTPase effectors, plasma membrane signalling and the exocyst. Biochemical Society Transactions. 2010;38(2):723–728. PubMed

Žárský V, Fowler JE. ROP, (Rho-related protein from plants) GTPases for spatial control of root hair morphogenesis. In: Emons AMC, Ketelaar T, editors. Root Hairs. Berlin, Germany: Springer; 2009. pp. 191–210.

Cvrčková F, Rivero F, Bavlnka B. Evolutionarily conserved modules in actin nucleation: lessons from Dictyostelium discoideum and plants. Protoplasma. 2004;224(1-2):15–31. PubMed

Rivero F, Cvrčková F. Origins and evolution of the actin cytoskeleton. In: Jekely G, editor. Eukaryotic Membranes and Cytoskeleton: Origins and Evolution. New York, NY, USA: Springer; 2007. pp. 97–110. PubMed

Wasserman S. FH proteins as cytoskeletal organizers. Trends in Cell Biology. 1998;8(3):111–115. PubMed

Zigmond SH. Formin-induced nucleation of actin filaments. Current Opinion in Cell Biology. 2004;16(1):99–105. PubMed

Faix J, Grosse R. Staying in shape with formins. Developmental Cell. 2006;10(6):693–706. PubMed

Young KG, Copeland JW. Formins in cell signaling. Biochimica et Biophysica Acta. 2010;1803(2):183–190. PubMed

Liu R, Linardopoulou EV, Osborn GE, Parkhurst SM. Formins in development: orchestrating body plan origami. Biochimica et Biophysica Acta. 2010;1803(2):207–225. PubMed PMC

Woychik RP, Stewart TA, Davis LG. An inherited limb deformity created by insertional mutagenesis in a transgenic mouse. Nature. 1985;318(6041):36–40. PubMed

De la Pompa JL, James D, Zeller R. Limb deformity proteins during avian neurulation and sense organ development. Developmental Dynamics. 1995;204(2):156–167. PubMed

Trumpp A, Blundell PA, De la Pompa JL, Zeller R. The chicken limb deformity gene encodes nuclear proteins expressed in specific cell types during morphogenesis. Genes and Development. 1992;6(1):14–28. PubMed

Zeller R, Haramis AG, Zuniga A, et al. Formin defines a large family of morphoregulatory genes and functions in establishment of the polarising region. Cell and Tissue Research. 1999;296(1):85–93. PubMed

Wang CC, Chan DC, Leder P. The mouse formin (Fmn) gene: genomic structure, novel exons, and genetic mapping. Genomics. 1997;39(3):303–311. PubMed

Evangelista M, Blundell K, Longtine MS, et al. Bni1p, a yeast formin linking Cdc42p and the actin cytoskeleton during polarized morphogenesis. Science. 1997;276(5309):118–122. PubMed

Kamei T, Tanaka K, Hihara T, et al. Interaction of Bnr1p with a novel Src homology 3 domain-containing Hof1p: implication in cytokinesis in Saccharomyces cerevisiae . Journal of Biological Chemistry. 1998;273(43):28341–28345. PubMed

Lee L, Klee SK, Evangelista M, Boone C, Pellman D. Control of mitotic spindle position by the Saccharomyces cerevisiae formin Bni1p. Journal of Cell Biology. 1999;144(5):947–961. PubMed PMC

Van Reenen CG, Meuwissen THE, Hopster H, Oldenbroek K, Kruip TAM, Blokhuis HJ. Transgenesis may affect farm animal welfare: a case for systematic risk assessment. Journal of Animal Science. 2001;79(7):1763–1779. PubMed

Zuniga A, Michos O, Spitz F, et al. Mouse limb deformity mutations disrupt a global control region within the large regulatory landscape required for Gremlin expression. Genes and Development. 2004;18(13):1553–1564. PubMed PMC

Zhou F, Leder P, Zuniga A, Dettenhofer M. Formin1 disruption confers oligodactylism and alters Bmp signaling. Human Molecular Genetics. 2009;18(13):2472–2482. PubMed PMC

Emmons S, Phan H, Calley J, Chen W, James B, Manseau L. cappuccino, a Drosophila maternal effect gene required for polarity of the egg and embryo, is related to the vertebrate limb deformity locus. Genes and Development. 1995;9(20):2482–2494. PubMed

Castrillon DH, Wasserman SA. diaphanous is required for cytokinesis in Drosophila and shares domains of similarity with the products of the limb deformity gene. Development. 1994;120(12):3367–3377. PubMed

Vogt TF, Jackson-Grusby L, Rush J, Leder P. Formins: phosphoprotein isoforms encoded by the mouse limb deformity locus. Proceedings of the National Academy of Sciences of the United States of America. 1993;90(12):5554–5558. PubMed PMC

Chan DC, Leder P. Genetic evidence that formins function within the nucleus. Journal of Biological Chemistry. 1996;271(38):23472–23477. PubMed

Haramis AG, Brown JM, Zeller R. The limb deformity mutation disrupts the SHH/FGF-4 feedback loop and regulation of 5′ HoxD genes during limb pattern formation. Development. 1995;121(12):4237–4245. PubMed

Higgs HN, Peterson KJ. Phylogenetic analysis of the formin homology 2 domain. Molecular Biology of the Cell. 2005;16(1):1–13. PubMed PMC

Grunt M, Žárský V, Cvrčková F. Roots of angiosperm formins: the evolutionary history of plant FH2 domain-containing proteins. BMC Evolutionary Biology. 2008;8(1, article no. 115) PubMed PMC

Chalkia D, Nikolaidis N, Makalowski W, Klein J, Nei M. Origins and evolution of the formin multigene family that is involved in the formation of actin filaments. Molecular Biology and Evolution. 2008;25(12):2717–2733. PubMed PMC

Rivero F, Muramoto T, Meyer AK, Urushihara H, Uyeda TQP, Kitayama C. A comparative sequence analysis reveals a common GBD/FH3-FH1-FH2-DAD architecture in formins from Dictyostelium, fungi and metazoa. BMC Genomics. 2005;6(article 28) PubMed PMC

Petersen J, Nielsen O, Egel R, Hagan IM. FH3, a domain found in formins, targets the fission yeast formin FUS1 to the projection tip during conjugation. Journal of Cell Biology. 1998;141(5):1217–1228. PubMed PMC

Watanabe N, Madaule P, Reid T, et al. p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO Journal. 1997;16(11):3044–3056. PubMed PMC

Tominaga T, Sahai E, Chardin P, McCormick F, Courtneidge SA, Alberts AS. Diaphanous-related formins bridge Rho GTPase and Src tyrosine kinase signaling. Molecular Cell. 2000;5(1):13–25. PubMed

Alberts AS. Diaphanous-related Formin homology proteins. Current Biology. 2002;12(23):p. R796. PubMed

Ridley AJ. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends in Cell Biology. 2006;16(10):522–529. PubMed

Hall A. Rho GTPases and the control of cell behaviour. Biochemical Society Transactions. 2005;33(5):891–895. PubMed

Sorokina EM, Chernoff J. Rho-GTPases: new members, new pathways. Journal of Cellular Biochemistry. 2005;94(2):225–231. PubMed

Mucha E, Fricke I, Schaefer A, Wittinghofer A, Berken A. Rho proteins of plants - Functional cycle and regulation of cytoskeletal dynamics. European Journal of Cell Biology. 2011;90:934–943. PubMed

Kato T, Watanabe N, Morishima Y, Fujita A, Ishizaki T, Narumiya S. Localization of a mammalian homolog of diaphanous, mDia1, to the mitotic spindle in HeLa cells. Journal of Cell Science. 2001;114(4):775–784. PubMed

Ishizaki T, Morishima Y, Okamoto M, Furuyashiki T, Kato T, Narumiya S. Coordination of microtubules and the actin cytoskeleton by the Rho effector mDia1. Nature Cell Biology. 2001;3(1):8–14. PubMed

Higgs HN. Formin proteins: a domain-based approach. Trends in Biochemical Sciences. 2005;30(6):342–353. PubMed

Young KG, Thurston SF, Copeland S, Smallwood C, Copeland JW. INF1 is a novel microtubule-associated formin. Molecular Biology of the Cell. 2008;19(12):5168–5180. PubMed PMC

Sagot I, Klee SK, Pellman D. Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nature Cell Biology. 2002;4(1):42–50. PubMed

Sagot I, Rodal AA, Moseley J, Goode BL, Pellman D. An actin nucleation mechanism mediated by Bni1 and profilin. Nature Cell Biology. 2002;4(8):626–631. PubMed

Xu Y, Moseley JB, Sagot I, et al. Crystal structures of a formin homology-2 domain reveal a tethered dimer architecture. Cell. 2004;116(5):711–723. PubMed

Goode BL, Eck MJ. Mechanism and function of formins in the control of actin assembly. Annual Review of Biochemistry. 2007;76:593–627. PubMed

Paul AS, Pollard TD. Review of the mechanism of processive actin filament elongation by formins. Cell Motility and the Cytoskeleton. 2009;66(8):606–617. PubMed PMC

Blanchoin L, Staiger CJ. Plant formins: diverse isoforms and unique molecular mechanism. Biochimica et Biophysica Acta. 2010;1803(2):201–206. PubMed

Kovar DR, Kuhn JR, Tichy AL, Pollard TD. The fission yeast cytokinesis formin Cdc12p is a barbed end actin filament capping protein gated by profilin. Journal of Cell Biology. 2003;161(5):875–887. PubMed PMC

Copeland SJ, Green BJ, Burchat S, Papalia GA, Banner D, Copeland JW. The diaphanous inhibitory domain/diaphanous autoregulatory domain interaction is able to mediate heterodimerization between mDia1 and mDia2. Journal of Biological Chemistry. 2007;282(41):30120–30130. PubMed

Sun H, Schlondorff JS, Brown EJ, Higgs HN, Pollak MR. Rho activation of mDia formins is modulated by an interaction with inverted formin 2 (INF2) Proceedings of the National Academy of Sciences of the United States of America. 2011;108(7):2933–2938. PubMed PMC

Kerkhoff E. Actin dynamics at intracellular membranes: the Spir/formin nucleator complex. European Journal of Cell Biology. 2011;90:922–925. PubMed

Brandt DT, Grosse R. Get to grips: steering local actin dynamics with IQGAPs. EMBO Reports. 2007;8(11):1019–1023. PubMed PMC

Liu R, Abreu-Blanco MT, Barry KC, Linardopoulou EV, Osborn GE, Parkhurst SM. Wash functions downstream of Rho and links linear and branched actin nucleation factors. Development. 2009;136(16):2849–2860. PubMed PMC

Michelot A, Guérin C, Huang S, et al. The formin homology 1 domain modulates the actin nucleation and bundling activity of Arabidopsis FORMIN1. Plant Cell. 2005;17(8):2296–2313. PubMed PMC

Michelot A, Derivery E, Paterski-Boujemaa R, et al. A novel mechanism for the formation of actin-filament bundles by a nonprocessive formin. Current Biology. 2006;16(19):1924–1930. PubMed

Machaidze G, Sokoll A, Shimada A, et al. Actin filament bundling and different nucleating effects of mouse diaphanous-related formin Fh2 domains on actin/adf and actin/cofilin complexes. Journal of Molecular Biology. 2010;403(4):529–545. PubMed

Harris ES, Rouiller I, Hanein D, Higgs HN. Mechanistic differences in actin bundling activity of two mammalian formins, FRL1 and mDia2. Journal of Biological Chemistry. 2006;281(20):14383–14392. PubMed

Esue O, Harris ES, Higgs HN, Wirtz D. The filamentous actin cross-linking/bundling activity of mammalian formins. Journal of Molecular Biology. 2008;384(2):324–334. PubMed

Delgehyr N, Lopes CSJ, Moir CA, Huisman SM, Segal M. Dissecting the involvement of formins in Bud6p-mediated cortical capture of microtubules in S. cerevisiae . Journal of Cell Science. 2008;121(22):3803–3814. PubMed

Bartolini F, Gundersen GG. Formins and microtubules. Biochimica et Biophysica Acta. 2010;1803(2):164–173. PubMed PMC

Bartolini F, Moseley JB, Schmoranzer J, Cassimeris L, Goode BL, Gundersen GG. The formin mDia2 stabilizes microtubules independently of its actin nucleation activity. Journal of Cell Biology. 2008;181(3):523–536. PubMed PMC

Mao Y. FORMIN a link between kinetochores and microtubule ends. Trends in Cell Biology. 2011;21:625–629. PubMed PMC

Deeks MJ, Fendrych M, Smertenko A, et al. The plant formin AtFH4 interacts with both actin and microtubules, and contains a newly identified microtubule-binding domain. Journal of Cell Science. 2010;123(8):1209–1215. PubMed

Li Y, Shen Y, Cai C, et al. The type II Arabidopsis formin14 interacts with microtubules and microfilaments to regulate cell division. Plant Cell. 2010;22(8):2710–2726. PubMed PMC

Zhang Z, Zhang Y, Tan H, et al. RICE MORPHOLOGY DETERMINANT encodes the type II formin FH5 and regulates rice morphogenesis. Plant Cell. 2011;23(2):681–700. PubMed PMC

Yang W, Ren S, Zhang X, et al. BENT UPPERMOST INTERNODE1 Encodes the class II formin FH5 crucial for actin organization and rice development. Plant Cell. 2011;23(2):661–680. PubMed PMC

Kanaya H, Takeya R, Takeuchi K, Watanabe N, Jing N, Sumimoto H. Fhos2, a novel formin-related actin-organizing protein, probably associates with the nestin intermediate filament. Genes to Cells. 2005;10(7):665–678. PubMed

Johnston RJ, Copeland JW, Fasnacht M, et al. An unusual Zn-finger/FH2 domain protein controls a left/right asymmetric neuronal fate decision in C. elegans . Development. 2006;133(17):3317–3328. PubMed

Bedford MT, Reed R, Leder P. WW domain-mediated interactions reveal a spliceosome-associated protein that binds a third class of proline-rich motif: the proline glycine and methionine-rich motif. Proceedings of the National Academy of Sciences of the United States of America. 1998;95(18):10602–10607. PubMed PMC

Fujiwara T, Tanaka K, Mino A, et al. Rho1p-Bni1p-Spa2p interactions: implication in localization of Bni1p at the bud site and regulation of the actin cytoskeleton in Saccharomyces cerevisiae . Molecular Biology of the Cell. 1998;9(5):1221–1233. PubMed PMC

Afshar K, Stuart B, Wasserman SA. Functional analysis of the Drosophila diaphanous FH protein in early embryonic development. Development. 2000;127(9):1887–1897. PubMed

Severson AF, Baillie DL, Bowerman B. A Formin Homology protein and a profilin are required for cytokinesis and Arp2/3-independent assembly of cortical microfilaments in C. elegans . Current Biology. 2002;12(24):2066–2075. PubMed

Gill MB, Roecklein-Canfield J, Sage DR, et al. EBV attachment stimulates FHOS/FHOD1 redistribution and co-aggregation with CD21: formin interactions with the cytoplasmic domain of human CD21. Journal of Cell Science. 2004;117(13):2709–2720. PubMed

Carramusa L, Ballestrem C, Zilberman Y, Bershadsky AD. Mammalian diaphanous-related formin Dia1 controls the organization of E-cadherin-mediated cell-cell junctions. Journal of Cell Science. 2007;120(21):3870–3882. PubMed

Mellor H. The role of formins in filopodia formation. Biochimica et Biophysica Acta. 2010;1803(2):191–200. PubMed

Yang C, Svitkina T. Filopodia initiation: focus on the Arp2/3 complex and formins. Cell Adhesion & Migration. 2011;5:402–408. PubMed PMC

Banno H, Chua NH. Characterization of the Arabidopsis formin-like protein AFH1 and its interacting protein. Plant and Cell Physiology. 2000;41(5):617–626. PubMed

Cvrčková F. Are plant formins integral membrane proteins? Genome Biology. 2000;1(1) RESEARCH001 PubMed PMC

Kaul S, Koo HL, Jenkins J, et al. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana . Nature. 2000;408(6814):796–815. PubMed

Deeks MJ, Hussey PJ, Davies B. Formins: intermediates in signal-transduction cascades that affect cytoskeletal reorganization. Trends in Plant Science. 2002;7(11):492–498. PubMed

Cvrčková F, Novotný M, Pícková D, Žárský V. Formin homology 2 domains occur in multiple contexts in angiosperms. BMC Genomics. 2004;5, article no. 44 PubMed PMC

Cvrčková F, Grunt M, Žárský V. Expression of GFP-mTalin reveals an actin-related role for the Arabidopsis Class II formin AtFH12. Biologia Plantarum. 2012;56:431–440.

Kieliszewski MJ, Lamport DTA. Extensin: repetitive motifs, functional sites, post-translational codes, and phylogeny. Plant Journal. 1994;5(2):157–172. PubMed

Li J, Yen C, Liaw D, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997;275(5308):1943–1947. PubMed

Steck PA, Pershouse MA, Jasser SA, et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nature Genetics. 1997;15(4):356–362. PubMed

Li L, Ernsting BR, Wishart MJ, Lohse DL, Dixon JE. A family of putative tumor suppressors is structurally and functionally conserved in humans and yeast. Journal of Biological Chemistry. 1997;272(47):29403–29406. PubMed

von Stein W, Ramrath A, Grimm A, Müller-Borg M, Wodarz A. Direct association of Bazooka/PAR-3 with the lipid phosphatase PTEN reveals a link between the PAR/aPKC complex and phosphoinositide signaling. Development. 2005;132(7):1675–1686. PubMed

Gupta R, Ting JTL, Sokolov LN, Johnson SA, Luan S. A tumor suppressor homolog, AtPTEN1, is essential for pollen development in Arabidopsis . Plant Cell. 2002;14(10):2495–2507. PubMed PMC

Cvrčková F, Grunt M, Bezvoda R, et al. Evolution of the land plant exocyst complexes. Frontiers in Plant Science. 2012;3(article 159) PubMed PMC

Hála M, Cole R, Synek L, et al. An exocyst complex functions in plant cell growth in Arabidopsis and tobacco. Plant Cell. 2008;20(5):1330–1345. PubMed PMC

Fendrych M, Žárský V, Synek L, et al. The Arabidopsis exocyst complex is involved in cytokinesis and cell plate maturation. Plant Cell. 2010;22(9):3053–3065. PubMed PMC

Kulich I, Cole R, Drdová E, et al. Arabidopsis exocyst subunits SEC8 and EXO70A1 and exocyst interactor ROH1 are involved in the localized deposition of seed coat pectin. New Phytologist. 2010;188(2):615–625. PubMed

Brookfield JFY. Genetic Redundancy. Advances in Genetics. 1997;36(C):137–155. PubMed

Gibson TA, Goldberg DS. Questioning the ubiquity of neofunctionalization. PLoS Computational Biology. 2009;5(1)e1000252 PubMed PMC

Nasmyth K, Dirick L, Surana U, Amon A, Cvrčková F. Some facts and thoughts on cell cycle control in yeast. Cold Spring Harbor Symposia on Quantitative Biology. 1991;56:9–20. PubMed

Hruz T, Laule O, Szabo G, et al. Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Advances in Bioinformatics. 2008;2008:5 pages.420747 PubMed PMC

Mazzucotelli E, Belloni S, Marone D, et al. The E3 ubiquitin ligase gene family in plants: regulation by degradation. Current Genomics. 2006;7(8):509–522. PubMed PMC

Martinière A, Gayral P, Hawes C, Runions J. Building bridges: formin1 of Arabidopsis forms a connection between the cell wall and the actin cytoskeleton. Plant Journal. 2011;66(2):354–365. PubMed

Deeks MJ, Cvrčková F, Machesky LM, et al. Arabidopsis group Ie formins localize to specific cell membrane domains, interact with actin-binding proteins and cause defects in cell expansion upon aberrant expression. New Phytologist. 2005;168(3):529–540. PubMed

Baluška F, Hlavačka A. Plant formins come of age: something special about cross-walls. New Phytologist. 2005;168(3):499–503. PubMed

Ingouff M, Fitz Gerald JN, Guérin C, et al. Plant formin AtFH5 is an evolutionarily conserved actin nucleator involved in cytokinesis. Nature Cell Biology. 2005;7(4):374–380. PubMed

Favery B, Chelysheva LA, Lebris M, et al. Arabidopsis formin AtFH6 is a plasma membrane-associated protein upregulated in giant cells induced by parasitic nematodes. Plant Cell. 2004;16(9):2529–2540. PubMed PMC

Van Damme D, Bouget FY, Van Poucke K, Inzé D, Geelen D. Molecular dissection of plant cytokinesis and phragmoplast structure: a survey of GFP-tagged proteins. Plant Journal. 2004;40(3):386–398. PubMed

Cheung AY, Wu HM. Overexpression of an Arabidopsis formin stimulates supernumerary actin cable formation from Pollen tube cell membrane. Plant Cell. 2004;16(1):257–269. PubMed PMC

Yi K, Guo C, Chen D, Zhao B, Yang B, Ren H. Cloning and functional characterization of a formin-like protein (AtFH8) from Arabidopsis . Plant Physiology. 2005;138(2):1071–1082. PubMed PMC

Ye J, Zheng Y, Yan A, et al. Arabidopsis formin3 directs the formation of actin cables and polarized growth in pollen tubes. Plant Cell. 2009;21(12):3868–3884. PubMed PMC

Cheung AY, Niroomand S, Zou Y, Wu HM. A transmembrane formin nucleates subapical actin assembly and controls tip-focused growth in pollen tubes. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(37):16390–16395. PubMed PMC

Mathur J. The ARP2/3 complex: giving plant cells a leading edge. BioEssays. 2005;27(4):377–387. PubMed

Vidali L, Van Gisbergen PAC, Guérin C, et al. Rapid formin-mediated actin-filament elongation is essential for polarized plant cell growth. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(32):13341–13346. PubMed PMC

Gerald JNF, Hui PS, Berger F. Polycomb group-dependent imprinting of the actin regulator AtFH5 regulates morphogenesis in Arabidopsis thaliana . Development. 2009;136(20):3399–3404. PubMed

Hartman JL, Garvik B, Hartwell L. Cell Biology: principles for the buffering of genetic variation. Science. 2001;291(5506):1001–1004. PubMed

Xue XH, Guo CQ, Du F, Lu QL, Zhang CM, Ren HY. AtFH8 is involved in root development under effect of low-dose latrunculin B in dividing cells. Molecular Plant. 2011;4(2):264–278. PubMed

Lukasik-Shreepaathy E, Vossen JH, Tameking WIL, de Vroomen MJ, Cornelissen BJC, Takken FLW. Protein-protein interactions as a proxy to monitor conformational changes and activation states of the tomato resistance protein I-2. Journal of Experimental Botany. 2012;63:3047–3060. PubMed PMC

Zheng Y, Xin H, Lin J, Liu -m C, Huang S. An Arabidopsis class II formin, AtFH19, nucleates actin assembly, binds to the barbed end of actin filaments and antagonizes the effect of AtFH1 on actin dynamics. Journal of Integrative Plant Biology. 2012;54(10):800–813. PubMed

van Gisbergen PA, Li M, Wu SZ, Bezanilla M. Class II formin targeting to the cell cortex by binding PI(3, 5)P2 is essential for polarized growth. The Journal of Cell Biology. 2012;198:235–250. PubMed PMC

Zamharir MG, Mardi M, Alavi SM, et al. Identification of genes differentially expressed during interaction of Mexican lime tree infected with ‘Candidatus Phytoplasma aurantifolia’. BMC Microbiology. 2011;11(article no. 1) PubMed PMC

Wan Y, Ash WM3, Fan L, Hao H, Kim MK, Lin J. Variable-angle total internal reflection fluorescence microscopy of intact cells of Arabidopsis thaliana . Plant Methods. 2011;7(article 27) PubMed PMC

Pei W, Du F, Zhang Y, He T, Ren H. Control of the actin cytoskeleton in root hair development. Plant Science. 2012;197:10–18. PubMed

Wang J, Xue X, Ren H. New insights into the role of plant formins: regulating the organization of the actin and microtubule cytoskeleton. Protoplasma. 2012;249:s101–s107. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace