Are plant formins integral membrane proteins?

. 2000 ; 1 (1) : RESEARCH001. [epub] 20000427

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid11104517

BACKGROUND: The formin family of proteins has been implicated in signaling pathways of cellular morphogenesis in both animals and fungi; in the latter case, at least, they participate in communication between the actin cytoskeleton and the cell surface. Nevertheless, they appear to be cytoplasmic or nuclear proteins, and it is not clear whether they communicate with the plasma membrane, and if so, how. Because nothing is known about formin function in plants, I performed a systematic search for putative Arabidopsis thaliana formin homologs. RESULTS: I found eight putative formin-coding genes in the publicly available part of the Arabidopsis genome sequence and analyzed their predicted protein sequences. Surprisingly, some of them lack parts of the conserved formin-homology 2 (FH2) domain and the majority of them seem to have signal sequences and putative transmembrane segments that are not found in yeast or animals formins. CONCLUSIONS: Plant formins define a distinct subfamily. The presence in most Arabidopsis formins of sequence motifs typical or transmembrane proteins suggests a mechanism of membrane attachment that may be specific to plant formins, and indicates an unexpected evolutionary flexibility of the conserved formin domain.

Zobrazit více v PubMed

Zárský V, Cvrcková F. Small GTPases in the morphogenesis of yeast and plant cells. . In Molecular Mechanisms of Signalling and Membrane Transport. 1997:75–88.

Sanderfoot AA, Raikhel N. The specificity of vesicle trafficking: coat proteins and SNAREs. . Plant Cell. 1999;11:629–642. PubMed PMC

Li H, Wu G, Ware D, Davis KR, Yang Z. Arabidopsis Rho-related GTPases: differential gene expression in pollen and polar localization in fission yeast. . Plant Physiol. 1998;118:407–417. PubMed PMC

Field C, Li R, Oegema K. Cytokinesis in eukaryotes: a mechanistic comparison. . Curr Opin Cell Biol. 1999;11:68–90. PubMed

Evangelista M, Blundell K, Longtine MS, Chow CJ, Adames N, Pringle JR, Peter M, Boone C. BniIp, a yeast formin linking Cdc42p and the actin cytoskeleton during polarized morphogenesis. . Science. 1997;276:118–122. PubMed

Zeller R, Haramis AG, Zuniga A, McGuigan C, Dono R, Davidson G, Chabanis S, Gibson T. Formin defines a large family of morphoregulatory genes and functions in establishment of the polarising region. . Cell Tissue Res. 1999;296:85–93. PubMed

Heil-Chapdelaine R, Adames N, Cooper JA. Formin' the connection between microtubules and the cell cortex. . J Cell Biol. 1999;144:809–811. PubMed PMC

Frazier J, Field C. Actin cytoskeleton: are FH proteins local organizers? Curr Biol. 1997;7:R414–R417. PubMed

Fujiwara T, Tanaka K, Mino A, Kikyo M, Takahashi K, Shimizu K, Takai Y. Rho Ip-BniI p- Spa2p interactions: implication in localization of BniIp at the bud site and regulation of the actin cytoskeleton in Saccharomyces cerevisiae. Mol Biol Cell. 1998;9:1221–1233. PubMed PMC

Wasserman S. FH proteins as cytoskeletal organizers. . Trends Cell Biol. 1998;8:111–115. PubMed

Johnson DI. Cdc42: an essential Rho-type GTPase controlling eukaryotic cell polarity. . Microbiol Mol Biol Rev. 1999;63:54–105. PubMed PMC

Zahner JE, Harkins HA, Pringle JR. Genetic analysis of the bipolar pattern of bud site selection in the yeast Saccharomyces cerevisiae. . Mol Cell Biol. 1996;16:1857–1870. PubMed PMC

Mino A, Tanaka K, Kamei T, Umikawa M, Fujiwara T, Takai Y. Shs1p: a novel member of septin that interacts with Spa2p, involved in polarized growth in Saccharomyces cerevisiae. . Biochem Biophys Res Commun. 1998;251:732–736. PubMed

Kamei T, Tanaka K, Hihara T, Umikawa M, Imamura H, Kikyo M, Ozaki K, Takai Y. Interaction of BnrIp with a novel Src homology 3 domain-containing HofIp. Implication in cytokinesis in Saccharomyces cerevisiae. J Biol Chem. 1998;273:28341–28345. PubMed

Miller RK, Matheos D, Rose MD. The cortical localization of the microtubule orientation protein, kar9p, is dependent upon actin and proteins required for polarization. . J Cell Biol. 1999;144:63–75 . PubMed PMC

Lee L, Klee SK, Evangelista M, Boone C, Pellman D. Control of mitotic spindle position by the Saccharomyces cerevisiae formin BniIp. . J Cell Biol. 1999;144:947–961. PubMed PMC

Chang F. Movement of a cytokinesis factor cdc12p to the site of cell division. . Curr Biol. 1999;9:849–852. PubMed

Schmidt A, Hall MN. Signaling to the actin cytoskeleton. . Annu Rev Cell Dev Biol. 1998;14:305–338. PubMed

Trumpp A, Blundell PA, de la Pompa JL, Zeller R. The chicken limb deformity gene encodes nuclear proteins expressed in specific cell types during morphogenesis. . Genes Dev. 1992;6:14–28. PubMed

de la Pompa JL, James D, Zeller R. The limb deformity proteins during avian neurulation and sense organ development. . Dev Dyn. 1995;204:156–167. PubMed

Hartwell LH, Hopfield JJ, Leibler S, Murray AW. From molecular to modular cell biology. . Nature. 1999;402 Supp:C47–C52. PubMed

Castrillon D, Wasserman S. Diaphanous is required for cytokinesis in Drosophila and shares domains of similarity with the limb deformity gene. . Development. 1994;20:3367–3377. PubMed

Petersen J, Nielsen O, Egel R, Hagan IM. FH3, a domain found in formins, targets the fission yeast formin FUSI to the projection tip during conjugation. J Cell Biol. 1998;141:1217–1228. PubMed PMC

Wang CC, Chan DC, Leder P. The mouse formin (Fmn) gene: genomic structure, novel exons, and genetic mapping. . Genomics. 1997;39:303–311. PubMed

Hebsgaard SM, Korning PG, Tolstrup N, Engelbrecht J, Rouze P, Brunak S. Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. . Nucleic Acids Res. 1996;24:3439–3452. PubMed PMC

Schultz J, Milpetz F, Bork P, Ponting C. SMART, a simple modular architecture research tool: Identification of signalling domains. . Proc Natl Acad Sci U S A. 1998;95:5857–5864. PubMed PMC

SMART - simple modular architecture research tool. PubMed PMC

Nielsen H, Engelbrecht J, Brunak S, von Heijne G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. . Prot Engng. 1997;10:1–6. PubMed

Keller B. Structural cell wall proteins. . Plant Physiol. 1993;101:1127–1130. PubMed PMC

Oota S, Saitou N. Phylogenetic relationship of muscle tissue deduced from superimposition of gene trees. . Mol Biol Evol. 1999;16:856–867. PubMed

Weng S. PatMatch, Pattern matching software for Saccharomyces genome database and Arabidopsis thaliana database. 1998

PatMatch

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. . J Mol Biol. 1990;215:403–410. PubMed

Gish W, States DJ. Identification of protein coding regions by database similarity search. . Nat Genet. 1993;3:266–272. PubMed

Appel RD, Bairoch A, Hochstrasser DF. A new generation of information retrieval tools for biologists: the example of the ExPASy WWW server. . Trends Biochem Sci. 1994;19:258–260. PubMed

ExPASy Molecular Biology Server

Schuler GD, Altschul SF, Lipman DJ. A workbench for multiple alignment construction analysis. . Prot Struct Funct Genet. 1991;9:180–190. PubMed

Ponting C, Aravind L. START: a lipid-binding domain in StAR, HD-ZIP and signalling proteins. . Trends Biochem Sci. 1999;24:130–132. PubMed

Consensus server

Nielsen H, Krogh A. Prediction of signal peptides and signal anchors by a hidden Markov model. . In Proceedings of the Sixth International Conference on Intelligent Systems for Molecular Biology (ISMB 6) Menlo Park, California: AAAI Press, 1998:122–130. PubMed

Signal P v2.0b2 World Wide Web Prediction Server

Felsenstein J. PHYLIP - Phylogeny Inference Package (Version 3.2). . Cladistics. 1989;5:164–166.

PHYLIP

Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol. 1987;4:406–425. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Transmembrane formins as active cargoes of membrane trafficking

. 2024 Jun 24 ; 75 (12) : 3668-3684.

Arabidopsis Class II Formins AtFH13 and AtFH14 Can Form Heterodimers but Exhibit Distinct Patterns of Cellular Localization

. 2020 Jan 05 ; 21 (1) : . [epub] 20200105

Formins: linking cytoskeleton and endomembranes in plant cells

. 2014 Dec 23 ; 16 (1) : 1-18. [epub] 20141223

Formins and membranes: anchoring cortical actin to the cell wall and beyond

. 2013 Nov 05 ; 4 () : 436. [epub] 20131105

AtFH1 formin mutation affects actin filament and microtubule dynamics in Arabidopsis thaliana

. 2013 Jan ; 64 (2) : 585-97. [epub] 20121201

Formins: emerging players in the dynamic plant cell cortex

. 2012 ; 2012 () : 712605. [epub] 20120926

Roots of angiosperm formins: the evolutionary history of plant FH2 domain-containing proteins

. 2008 Apr 22 ; 8 () : 115. [epub] 20080422

Formin homology 2 domains occur in multiple contexts in angiosperms

. 2004 Jul 15 ; 5 (1) : 44. [epub] 20040715

Molecular diversity of phospholipase D in angiosperms

. 2002 ; 3 () : 2. [epub] 20020201

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace