Are plant formins integral membrane proteins?
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
11104517
PubMed Central
PMC31918
DOI
10.1186/gb-2000-1-1-research001
Knihovny.cz E-zdroje
- MeSH
- aminokyselinové motivy MeSH
- Arabidopsis chemie genetika MeSH
- konsenzuální sekvence MeSH
- membránové proteiny chemie genetika MeSH
- molekulární sekvence - údaje MeSH
- peptidy chemie klasifikace genetika MeSH
- rostlinné proteiny chemie klasifikace genetika MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie aminokyselin MeSH
- sekvenční seřazení MeSH
- terciární struktura proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- membránové proteiny MeSH
- peptidy MeSH
- rostlinné proteiny MeSH
BACKGROUND: The formin family of proteins has been implicated in signaling pathways of cellular morphogenesis in both animals and fungi; in the latter case, at least, they participate in communication between the actin cytoskeleton and the cell surface. Nevertheless, they appear to be cytoplasmic or nuclear proteins, and it is not clear whether they communicate with the plasma membrane, and if so, how. Because nothing is known about formin function in plants, I performed a systematic search for putative Arabidopsis thaliana formin homologs. RESULTS: I found eight putative formin-coding genes in the publicly available part of the Arabidopsis genome sequence and analyzed their predicted protein sequences. Surprisingly, some of them lack parts of the conserved formin-homology 2 (FH2) domain and the majority of them seem to have signal sequences and putative transmembrane segments that are not found in yeast or animals formins. CONCLUSIONS: Plant formins define a distinct subfamily. The presence in most Arabidopsis formins of sequence motifs typical or transmembrane proteins suggests a mechanism of membrane attachment that may be specific to plant formins, and indicates an unexpected evolutionary flexibility of the conserved formin domain.
Zobrazit více v PubMed
Zárský V, Cvrcková F. Small GTPases in the morphogenesis of yeast and plant cells. . In Molecular Mechanisms of Signalling and Membrane Transport. 1997:75–88.
Sanderfoot AA, Raikhel N. The specificity of vesicle trafficking: coat proteins and SNAREs. . Plant Cell. 1999;11:629–642. PubMed PMC
Li H, Wu G, Ware D, Davis KR, Yang Z. Arabidopsis Rho-related GTPases: differential gene expression in pollen and polar localization in fission yeast. . Plant Physiol. 1998;118:407–417. PubMed PMC
Field C, Li R, Oegema K. Cytokinesis in eukaryotes: a mechanistic comparison. . Curr Opin Cell Biol. 1999;11:68–90. PubMed
Evangelista M, Blundell K, Longtine MS, Chow CJ, Adames N, Pringle JR, Peter M, Boone C. BniIp, a yeast formin linking Cdc42p and the actin cytoskeleton during polarized morphogenesis. . Science. 1997;276:118–122. PubMed
Zeller R, Haramis AG, Zuniga A, McGuigan C, Dono R, Davidson G, Chabanis S, Gibson T. Formin defines a large family of morphoregulatory genes and functions in establishment of the polarising region. . Cell Tissue Res. 1999;296:85–93. PubMed
Heil-Chapdelaine R, Adames N, Cooper JA. Formin' the connection between microtubules and the cell cortex. . J Cell Biol. 1999;144:809–811. PubMed PMC
Frazier J, Field C. Actin cytoskeleton: are FH proteins local organizers? Curr Biol. 1997;7:R414–R417. PubMed
Fujiwara T, Tanaka K, Mino A, Kikyo M, Takahashi K, Shimizu K, Takai Y. Rho Ip-BniI p- Spa2p interactions: implication in localization of BniIp at the bud site and regulation of the actin cytoskeleton in Saccharomyces cerevisiae. Mol Biol Cell. 1998;9:1221–1233. PubMed PMC
Wasserman S. FH proteins as cytoskeletal organizers. . Trends Cell Biol. 1998;8:111–115. PubMed
Johnson DI. Cdc42: an essential Rho-type GTPase controlling eukaryotic cell polarity. . Microbiol Mol Biol Rev. 1999;63:54–105. PubMed PMC
Zahner JE, Harkins HA, Pringle JR. Genetic analysis of the bipolar pattern of bud site selection in the yeast Saccharomyces cerevisiae. . Mol Cell Biol. 1996;16:1857–1870. PubMed PMC
Mino A, Tanaka K, Kamei T, Umikawa M, Fujiwara T, Takai Y. Shs1p: a novel member of septin that interacts with Spa2p, involved in polarized growth in Saccharomyces cerevisiae. . Biochem Biophys Res Commun. 1998;251:732–736. PubMed
Kamei T, Tanaka K, Hihara T, Umikawa M, Imamura H, Kikyo M, Ozaki K, Takai Y. Interaction of BnrIp with a novel Src homology 3 domain-containing HofIp. Implication in cytokinesis in Saccharomyces cerevisiae. J Biol Chem. 1998;273:28341–28345. PubMed
Miller RK, Matheos D, Rose MD. The cortical localization of the microtubule orientation protein, kar9p, is dependent upon actin and proteins required for polarization. . J Cell Biol. 1999;144:63–75 . PubMed PMC
Lee L, Klee SK, Evangelista M, Boone C, Pellman D. Control of mitotic spindle position by the Saccharomyces cerevisiae formin BniIp. . J Cell Biol. 1999;144:947–961. PubMed PMC
Chang F. Movement of a cytokinesis factor cdc12p to the site of cell division. . Curr Biol. 1999;9:849–852. PubMed
Schmidt A, Hall MN. Signaling to the actin cytoskeleton. . Annu Rev Cell Dev Biol. 1998;14:305–338. PubMed
Trumpp A, Blundell PA, de la Pompa JL, Zeller R. The chicken limb deformity gene encodes nuclear proteins expressed in specific cell types during morphogenesis. . Genes Dev. 1992;6:14–28. PubMed
de la Pompa JL, James D, Zeller R. The limb deformity proteins during avian neurulation and sense organ development. . Dev Dyn. 1995;204:156–167. PubMed
Hartwell LH, Hopfield JJ, Leibler S, Murray AW. From molecular to modular cell biology. . Nature. 1999;402 Supp:C47–C52. PubMed
Castrillon D, Wasserman S. Diaphanous is required for cytokinesis in Drosophila and shares domains of similarity with the limb deformity gene. . Development. 1994;20:3367–3377. PubMed
Petersen J, Nielsen O, Egel R, Hagan IM. FH3, a domain found in formins, targets the fission yeast formin FUSI to the projection tip during conjugation. J Cell Biol. 1998;141:1217–1228. PubMed PMC
Wang CC, Chan DC, Leder P. The mouse formin (Fmn) gene: genomic structure, novel exons, and genetic mapping. . Genomics. 1997;39:303–311. PubMed
Hebsgaard SM, Korning PG, Tolstrup N, Engelbrecht J, Rouze P, Brunak S. Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. . Nucleic Acids Res. 1996;24:3439–3452. PubMed PMC
Schultz J, Milpetz F, Bork P, Ponting C. SMART, a simple modular architecture research tool: Identification of signalling domains. . Proc Natl Acad Sci U S A. 1998;95:5857–5864. PubMed PMC
SMART - simple modular architecture research tool. PubMed PMC
Nielsen H, Engelbrecht J, Brunak S, von Heijne G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. . Prot Engng. 1997;10:1–6. PubMed
Keller B. Structural cell wall proteins. . Plant Physiol. 1993;101:1127–1130. PubMed PMC
Oota S, Saitou N. Phylogenetic relationship of muscle tissue deduced from superimposition of gene trees. . Mol Biol Evol. 1999;16:856–867. PubMed
Weng S. PatMatch, Pattern matching software for Saccharomyces genome database and Arabidopsis thaliana database. 1998
PatMatch
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. . J Mol Biol. 1990;215:403–410. PubMed
Gish W, States DJ. Identification of protein coding regions by database similarity search. . Nat Genet. 1993;3:266–272. PubMed
Appel RD, Bairoch A, Hochstrasser DF. A new generation of information retrieval tools for biologists: the example of the ExPASy WWW server. . Trends Biochem Sci. 1994;19:258–260. PubMed
ExPASy Molecular Biology Server
Schuler GD, Altschul SF, Lipman DJ. A workbench for multiple alignment construction analysis. . Prot Struct Funct Genet. 1991;9:180–190. PubMed
Ponting C, Aravind L. START: a lipid-binding domain in StAR, HD-ZIP and signalling proteins. . Trends Biochem Sci. 1999;24:130–132. PubMed
Consensus server
Nielsen H, Krogh A. Prediction of signal peptides and signal anchors by a hidden Markov model. . In Proceedings of the Sixth International Conference on Intelligent Systems for Molecular Biology (ISMB 6) Menlo Park, California: AAAI Press, 1998:122–130. PubMed
Signal P v2.0b2 World Wide Web Prediction Server
Felsenstein J. PHYLIP - Phylogeny Inference Package (Version 3.2). . Cladistics. 1989;5:164–166.
PHYLIP
Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol. 1987;4:406–425. PubMed
Transmembrane formins as active cargoes of membrane trafficking
Formins: linking cytoskeleton and endomembranes in plant cells
Formins and membranes: anchoring cortical actin to the cell wall and beyond
AtFH1 formin mutation affects actin filament and microtubule dynamics in Arabidopsis thaliana
Formins: emerging players in the dynamic plant cell cortex
Roots of angiosperm formins: the evolutionary history of plant FH2 domain-containing proteins
Formin homology 2 domains occur in multiple contexts in angiosperms