Formins: linking cytoskeleton and endomembranes in plant cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
25546384
PubMed Central
PMC4307232
DOI
10.3390/ijms16010001
PII: ijms16010001
Knihovny.cz E-zdroje
- MeSH
- intracelulární membrány metabolismus MeSH
- mikrofilamenta metabolismus MeSH
- proteiny asociované s mikrotubuly chemie genetika metabolismus MeSH
- proteiny buněčného cyklu genetika metabolismus MeSH
- proteiny huseníčku chemie genetika metabolismus MeSH
- rostlinné buňky metabolismus MeSH
- transport proteinů MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- FH16 protein, Arabidopsis MeSH Prohlížeč
- FH5 protein, Arabidopsis MeSH Prohlížeč
- proteiny asociované s mikrotubuly MeSH
- proteiny buněčného cyklu MeSH
- proteiny huseníčku MeSH
The cytoskeleton plays a central part in spatial organization of the plant cytoplasm, including the endomebrane system. However, the mechanisms involved are so far only partially understood. Formins (FH2 proteins), a family of evolutionarily conserved proteins sharing the FH2 domain whose dimer can nucleate actin, mediate the co-ordination between actin and microtubule cytoskeletons in multiple eukaryotic lineages including plants. Moreover, some plant formins contain transmembrane domains and participate in anchoring cytoskeletal structures to the plasmalemma, and possibly to other membranes. Direct or indirect membrane association is well documented even for some fungal and metazoan formins lacking membrane insertion motifs, and FH2 proteins have been shown to associate with endomembranes and modulate their dynamics in both fungi and metazoans. Here we summarize the available evidence suggesting that formins participate in membrane trafficking and endomembrane, especially ER, organization also in plants. We propose that, despite some methodological pitfalls inherent to in vivo studies based on (over)expression of truncated and/or tagged proteins, formins are beginning to emerge as candidates for the so far somewhat elusive link between the plant cytoskeleton and the endomembrane system.
Zobrazit více v PubMed
Brandizzi F., Barlowe C. Organization of the ER-Golgi interface for membrane traffic control. Nat. Rev. Mol. Cell Biol. 2013;14:382–392. doi: 10.1038/nrm3588. PubMed DOI PMC
Stefano G., Hawes C., Brandizzi F. ER—the key to the highway. Curr. Opin. Plant Biol. 2014;26:30–38. doi: 10.1016/j.pbi.2014.09.001. PubMed DOI PMC
Sparkes I.A., Teanby N.A., Hawes C. Truncated myosin XI tail fusions inhibit peroxisome, Golgi, and mitochondrial movement in tobacco leaf epidermal cells: A genetic tool for the next generation. J. Exp. Bot. 2008;59:2499–2512. doi: 10.1093/jxb/ern114. PubMed DOI PMC
Avisar D., Abu-Abied M., Belausov E., Sadot E., Hawes C., Sparkes I.A. A comparative study of the involvement of 17 Arabidopsis myosin family members on the motility of Golgi and other organelles. Plant Physiol. 2009;150:700–709. doi: 10.1104/pp.109.136853. PubMed DOI PMC
Peremyslov V.V., Prokhnevsky A.I., Dolja V.V. Class XI myosins are required for development, cell expansion, and F-Actin organization in Arabidopsis. Plant Cell. 2010;22:1883–1897. doi: 10.1105/tpc.110.076315. PubMed DOI PMC
Avisar D., Abu-Abied M., Belausov E., Sadot E. Myosin XIK is a major player in cytoplasm dynamics and is regulated by two amino acids in its tail. J. Exp. Bot. 2012;63:241–249. doi: 10.1093/jxb/err265. PubMed DOI PMC
Griffing L.R., Gao H.T., Sparkes I. ER network dynamics are differentially controlled by myosins XI-K, XI-C, XI-E, XI-I, XI-1, and XI-2. Front. Plant Sci. 2014;5 doi: 10.3389/fpls.2014.00218. PubMed DOI PMC
Akkerman M., Overdijk E.J., Schel J.H., Emons A.M., Ketelaar T. Golgi body motility in the plant cell cortex correlates with actin cytoskeleton organization. Plant Cell Physiol. 2011;52:1844–1855. doi: 10.1093/pcp/pcr122. PubMed DOI
Miller P.M., Folkmann A.W., Maia A.R., Efimova N., Efimov A., Kaverina I. Golgi-derived CLASP-dependent microtubules control Golgi organization and polarized trafficking in motile cells. Nat. Cell Biol. 2009;11:1069–1080. doi: 10.1038/ncb1920. PubMed DOI PMC
Friedman J.R., Webster B.M., Mastronarde D.N., Verhey K.J., Voeltz G.K. ER sliding dynamics and ER-mitochondrial contacts occur on acetylated microtubules. J. Cell Biol. 2010;190:363–375. doi: 10.1083/jcb.200911024. PubMed DOI PMC
Hamada T., Tominaga M., Fukaya T., Nakamura M., Nakano A., Watanabe Y., Hashimoto T., Baskin T.I. RNA processing bodies, peroxisomes, Golgi bodies, mitochondria, and endoplasmic reticulum tubule junctions frequently pause at cortical microtubules. Plant Cell Physiol. 2012;53:699–708. doi: 10.1093/pcp/pcs025. PubMed DOI
Peña E.J., Heinlein M. Cortical microtubule-associated ER sites: Organization centers of cell polarity and communication. Curr. Opin. Plant Biol. 2013;16:764–773. doi: 10.1016/j.pbi.2013.10.002. PubMed DOI
Hamada T., Ueda H., Kawase T., Hara-Nishimura I. Microtubules contribute to tubule elongation and anchoring of endoplasmic reticulum, resulting in high network complexity in Arabidopsis thaliana. Plant Physiol. 2014;166:1869–1876. doi: 10.1104/pp.114.252320. PubMed DOI PMC
Foissner I., Menzel D., Wasteneys G.O. Microtubule-dependent motility and orientation of the cortical endoplasmic reticulum in elongating characean internodal cells. Cell Motil. Cytoskelet. 2009;66:142–155. doi: 10.1002/cm.20337. PubMed DOI
Deeks M.J., Calcutt J.R., Ingle E.K., Hawkins T.J., Chapman S., Richardson A.C., Mentlak D.A., Dixon M.R., Cartwright F., Smertenko A.P., et al. A superfamily of actin-binding proteins at the actin-membrane nexus of higher plants. Curr. Biol. 2012;22:1595–1600. doi: 10.1016/j.cub.2012.06.041. PubMed DOI
Wang P., Hawkins T.J., Richardson C., Cummins I., Deeks M.J., Sparkes I., Hawes C., Hussey P.J. The plant cytoskeleton, NET3C, and VAP27 mediate the link between the plasma membrane and endoplasmic reticulum. Curr. Biol. 2014;24:1397–1405. doi: 10.1016/j.cub.2014.05.003. PubMed DOI
Schmidt von Braun S., Schleiff E. The chloroplast outer membrane protein CHUP1 interacts with actin and profilin. Planta. 2008;227:1151–1159. doi: 10.1007/s00425-007-0688-7. PubMed DOI
Suetsugu N., Yamada N., Kagawa T., Yonekura H., Uyeda T.Q., Kadota A., Wada M. Two kinesin-like proteins mediate actin-based chloroplast movement in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 2010;107:8860–8865. doi: 10.1073/pnas.0912773107. PubMed DOI PMC
Breitsprecher D., Goode B.L. Formins at a glance. J. Cell Sci. 2013;126:1–7. doi: 10.1242/jcs.107250. PubMed DOI PMC
Deeks M.J., Hussey P.J., Davies B. Formins: Intermediates in signal-transduction cascades that affect cytoskeletal reorganization. Trends Plant Sci. 2002;7:492–498. doi: 10.1016/S1360-1385(02)02341-5. PubMed DOI
Cvrčková F., Novotný M., Pícková D., Žárský V. Formin homology 2 domains occur in multiple contexts in angiosperms. BMC Genomics. 2004;5 doi: 10.1186/1471-2164-5-44. PubMed DOI PMC
Grunt M., Žárský V., Cvrčková F. Roots of angiosperm formins: The evolutionary history of plant FH2 domain-containing proteins. BMC Evol. Biol. 2008;8 doi: 10.1186/1471-2148-8-115. PubMed DOI PMC
Pruyne D., Evangelista M., Yang C., Bi E., Zigmond S., Bretscher A., Boone C. Role of formins in actin assembly: Nucleation and barbed-end association. Science. 2002;297:612–615. doi: 10.1126/science.1072309. PubMed DOI
Sagot I., Rodal A.A., Moseley J., Goode B.L., Pellman D. An actin nucleation mechanism mediated by Bni1 and profilin. Nat. Cell Biol. 2002;4:626–631. PubMed
Bartolini F., Gundersen G.G. Formins and microtubules. Biochim. Biophys. Acta. 2010;1803:164–173. doi: 10.1016/j.bbamcr.2009.07.006. PubMed DOI PMC
Chesarone M.A., DuPage A.G., Goode B.L. Unleashing formins to remodel the actin and microtubule cytoskeletons. Nat. Rev. Mol. Cell Biol. 2010;11:62–74. doi: 10.1038/nrm2816. PubMed DOI
Wang J., Xue X., Ren H. New insights into the role of plant formins: Regulating the organization of the actin and microtubule cytoskeleton. Protoplasma. 2012;249:S101–S107. doi: 10.1007/s00709-011-0368-0. PubMed DOI
Rivero F., Muramoto T., Meyer A.K., Urushihara H., Uyeda T.Q., Kitayama C. A comparative sequence analysis reveals a common GBD/FH3-FH1-FH2-DAD architecture in formins from Dictyostelium, fungi and metazoa. BMC Genomics. 2005;6 doi: 10.1186/1471-2164-6-28. PubMed DOI PMC
Chalkia D., Nikolaidis N., Makalowski W., Klein J., Nei M. Origins and evolution of the formin multigene family that is involved in the formation of actin filaments. Mol. Biol. Evol. 2008;25:2717–2733. doi: 10.1093/molbev/msn215. PubMed DOI PMC
Xu Y., Moseley J.B., Sagot I., Poy F., Pellman D., Goode B.L., Eck M.J. Crystal structures of a formin homology-2 domain reveal a tethered dimer architecture. Cell. 2004;116:711–723. doi: 10.1016/S0092-8674(04)00210-7. PubMed DOI
Kovar D.R., Harris E.S., Mahaffy R., Higgs H.N., Pollard T.D. Control of the assembly of ATP- and ADP-actin by formins and profilin. Cell. 2006;124:423–435. doi: 10.1016/j.cell.2005.11.038. PubMed DOI
Scott B.J., Neidt E.M., Kovar D.R. The functionally distinct fission yeast formins have specific actin-assembly properties. Mol. Biol. Cell. 2011;22:3826–3839. doi: 10.1091/mbc.E11-06-0492. PubMed DOI PMC
Michelot A., Guérin C., Huang S., Ingouff M., Richard S., Rodiuc N., Staiger C.J., Blanchoin L. The formin homology 1 domain modulates the actin nucleation and bundling activity of Arabidopsis FORMIN1. Plant Cell. 2005;17:2296–2313. doi: 10.1105/tpc.105.030908. PubMed DOI PMC
Deeks M.J., Cvrčková F., Machesky L.M., Mikitová V., Ketelaar T., Žárský V., Davies B., Hussey P.J. Arabidopsis group Ie formins localize to specific cell membrane domains, interact with actin-binding proteins and cause defects in cell expansion upon aberrant expression. New Phytol. 2005;168:529–540. doi: 10.1111/j.1469-8137.2005.01582.x. PubMed DOI
Ingouff M., Fitz Gerald J.N., Guérin C., Robert H., Sørensen M.B., van Damme D., Geelen D., Blanchoin L., Berger F. Plant formin AtFH5 is an evolutionarily conserved actin nucleator involved in cytokinesis. Nat. Cell Biol. 2005;7:374–380. doi: 10.1038/ncb1238. PubMed DOI
Yi K., Guo C., Chen D., Zhao B., Yang B., Ren H. Cloning and functional characterization of a formin-like protein (AtFH8) from Arabidopsis. Plant Physiol. 2005;138:1071–1082. doi: 10.1104/pp.104.055665. PubMed DOI PMC
Ye J., Zheng Y., Yan A., Chen N., Wang Z., Huang S., Yang Z. Arabidopsis formin3 directs the formation of actin cables and polarized growth in pollen tubes. Plant Cell. 2009;21:3868–3884. doi: 10.1105/tpc.109.068700. PubMed DOI PMC
Yang W., Ren S., Zhang X., Gao M., Ye S., Qi Y., Zheng Y., Wang J., Zeng L., Li Q., et al. BENT UPPERMOST INTERNODE1 encodes the class II formin FH5 crucial for actin organization and rice development. Plant Cell. 2011;23:661–680. doi: 10.1105/tpc.110.081802. PubMed DOI PMC
Zheng Y., Xin H., Lin J., Liu C.M., Huang S. An Arabidopsis class II formin, AtFH19, nucleates actin assembly, binds to the barbed end of actin filaments, and antagonizes the effect of AtFH1 on actin dynamics. J. Integr. Plant Biol. 2012;54:800–813. doi: 10.1111/j.1744-7909.2012.01160.x. PubMed DOI
Martinière A., Gayral P., Hawes C., Runions J. Building bridges: Formin1 of Arabidopsis forms a connection between the cell wall and the actin cytoskeleton. Plant J. 2011;66:354–365. doi: 10.1111/j.1365-313X.2011.04497.x. PubMed DOI
Wang J., Zhang Y., Wu J., Meng L., Ren H. AtFH16, an Arabidopsis type II formin, binds and bundles both microfilaments and microtubules, and preferentially binds to microtubules. J. Integr. Plant Biol. 2013;55:1002–1015. doi: 10.1111/jipb.12089. PubMed DOI
Blanchoin L., Staiger C.J. Plant formins: Diverse isoforms and unique molecular mechanism. Biochim. Biophys. Acta. 2010;1803:201–206. doi: 10.1016/j.bbamcr.2008.09.015. PubMed DOI
Schönichen A., Geyer M. Fifteen formins for an actin filament: A molecular view on the regulation of human formins. Biochim. Biophys. Acta. 2010;1803:152–163. doi: 10.1016/j.bbamcr.2010.01.014. PubMed DOI
Krainer E.C., Ouderkirk J.L., Miller E.W., Miller M.R., Mersich A.T., Blystone S.D. The multiplicity of human formins: Expression patterns in cells and tissues. Cytoskeleton. 2013;70:424–438. doi: 10.1002/cm.21113. PubMed DOI PMC
Deeks M.J., Fendrych M., Smertenko A., Bell K.S., Oparka K., Cvrčková F., Žárský V., Hussey P.J. The plant formin AtFH4 interacts with both actin and microtubules, and contains a newly identified microtubule-binding domain. J. Cell Sci. 2010;123:1209–1215. doi: 10.1242/jcs.065557. PubMed DOI
Li Y., Shen Y., Cai C., Zhong C., Zhu L., Yuan M., Ren H. The type II Arabidopsis formin14 interacts with microtubules and microfilaments to regulate cell division. Plant Cell. 2010;22:2710–2726. doi: 10.1105/tpc.110.075507. PubMed DOI PMC
Xue X.H., Guo C.Q., Du F., Lu Q.L., Zhang C.M., Ren H.Y. AtFH8 is involved in root development under effect of low-dose latrunculin B in dividing cells. Mol. Plant. 2011;4:264–278. doi: 10.1093/mp/ssq085. PubMed DOI
Zhang Z., Zhang Y., Tan H., Wang Y., Li G., Liang W., Yuan Z., Hu J., Ren H., Zhang D. RICE MORPHOLOGY DETERMINANT encodes the type II formin FH5 and regulates rice morphogenesis. Plant Cell. 2011;23:681–700. doi: 10.1105/tpc.110.081349. PubMed DOI PMC
Cvrčková F. Formins and membranes: Anchoring cortical actin to the cell wall and beyond. Front. Plant Sci. 2013;4 doi: 10.3389/fpls.2013.00436. PubMed DOI PMC
Alberts A.S. Diaphanous-related Formin homology proteins. Curr. Biol. 2002;12:R796–R796. doi: 10.1016/S0960-9822(02)01309-X. PubMed DOI
Rousso T., Shewan A.M., Mostov K.E., Schejter E.D., Shilo B.-Z. Apical targeting of the formin Diaphanous in Drosophila tubular epithelia. eLife. 2013;2 doi: 10.7554/eLife.00666. PubMed DOI PMC
Van Gisbergen P.A., Bezanilla M. Plant formins: Membrane anchors for actin polymerization. Trends Cell Biol. 2013;23:227–233. doi: 10.1016/j.tcb.2012.12.001. PubMed DOI
Banno H., Chua N.-H. Characterization of the arabidopsis formin-like protein AFH1 and its interacting protein. Plant Cell Physiol. 2000;41:617–626. doi: 10.1093/pcp/41.5.617. PubMed DOI
Cvrčková F. Are plant formins integral membrane proteins? Genome Biol. 2000;1 doi: 10.1186/gb-2000-1-1-research001. PubMed DOI PMC
Van Gisbergen P.A., Li M., Wu S.Z., Bezanilla M. Class II formin targeting to the cell cortex by binding PI(3,5)P2 is essential for polarized growth. J. Cell Biol. 2012;198:235–250. PubMed PMC
GO:0000133: Polarisome. [(accessed on 9 November 2014)]. Available online: http://amigo.geneontology.org/amigo/term/GO:0000133.
Ozaki-Kuroda K., Yamamoto Y., Nohara H., Kinoshita M., Fujiwara T., Irie K., Takai Y. Dynamic localization and function of Bni1p at the sites of directed growth in Saccharomyces cerevisiae. Mol. Cell Biol. 2001;21:827–839. doi: 10.1128/MCB.21.3.827-839.2001. PubMed DOI PMC
Buttery S.M., Yoshida S., Pellman D. Yeast formins Bni1 and Bnr1 utilize different modes of cortical interaction during the assembly of actin cables. Mol. Biol. Cell. 2007;18:1826–1838. doi: 10.1091/mbc.E06-09-0820. PubMed DOI PMC
Li X., Ferro-Novick S., Novick P. Different polarisome components play distinct roles in Slt2p-regulated cortical ER inheritance in Saccharomyces cerevisiae. Mol. Biol. Cell. 2013;24:3145–3154. doi: 10.1091/mbc.E13-05-0268. PubMed DOI PMC
Chapa-Y-Lazo B., Lee S., Regan H., Sudbery P. The mating projections of Saccharomyces cerevisiae and Candida albicans show key characteristics of hyphal growth. Fungal Biol. 2011;115:547–556. doi: 10.1016/j.funbio.2011.02.001. PubMed DOI
Harris S.D., Read N.D., Roberson R.W., Shaw B., Seiler S., Plamann M., Momany M. Polarisome meets spitzenkörper: Microscopy, genetics, and genomics converge. Eukaryot. Cell. 2005;4:225–229. doi: 10.1128/EC.4.2.225-229.2005. PubMed DOI PMC
Crampin H., Finley K., Gerami-Nejad M., Court H., Gale C., Berman J., Sudbery P. Candida albicans hyphae have a Spitzenkörper that is distinct from the polarisome found in yeast and pseudohyphae. J. Cell Sci. 2005;118:2935–2947. doi: 10.1242/jcs.02414. PubMed DOI
Jones L.A., Sudbery P.E. Spitzenkorper, exocyst, and polarisome components in Candida albicans hyphae show different patterns of localization and have distinct dynamic properties. Eukaryot. Cell. 2010;9:1455–1465. doi: 10.1128/EC.00109-10. PubMed DOI PMC
Sharpless K.E., Harris S.D. Functional characterization and localization of the Aspergillus nidulans formin SEPA. Mol. Biol. Cell. 2002;13:469–479. doi: 10.1091/mbc.01-07-0356. PubMed DOI PMC
Martin R., Walther A., Wendland J. Ras1-induced hyphal development in Candida albicans requires the formin Bni1. Eukaryot. Cell. 2005;4:1712–1724. doi: 10.1128/EC.4.10.1712-1724.2005. PubMed DOI PMC
Rida P.C., Nishikawa A., Won G.Y., Dean N. Yeast-to-hyphal transition triggers formin-dependent Golgi localization to the growing tip in Candida albicans. Mol. Biol. Cell. 2006;17:4364–4378. doi: 10.1091/mbc.E06-02-0143. PubMed DOI PMC
Jourdain I., Dooley H.C., Toda T. Fission yeast sec3 bridges the exocyst complex to the actin cytoskeleton. Traffic. 2012;13:1481–1495. doi: 10.1111/j.1600-0854.2012.01408.x. PubMed DOI PMC
Nakano K., Imai J., Arai R., Toh-E A., Matsui Y., Mabuchi I. The small GTPase Rho3 and the diaphanous/formin For3 function in polarized cell growth in fission yeast. J. Cell Sci. 2002;115:4629–4639. doi: 10.1242/jcs.00150. PubMed DOI
Liu D., Novick P. Bem1p contributes to secretory pathway polarization through a direct interaction with Exo70p. J. Cell Biol. 2014;207:59–72. doi: 10.1083/jcb.201404122. PubMed DOI PMC
Colón-Franco J.M., Gomez T.S., Billadeau D.D. Dynamic remodeling of the actin cytoskeleton by FMNL1γ is required for structural maintenance of the Golgi complex. J. Cell Sci. 2011;124:3118–3126. doi: 10.1242/jcs.083725. PubMed DOI PMC
Zilberman Y., Alieva N.O., Miserey-Lenkei S., Lichtenstein A., Kam Z., Sabanay H., Bershadsky A. Involvement of the Rho-mDia1 pathway in the regulation of Golgi complex architecture and dynamics. Mol. Biol. Cell. 2011;22:2900–2911. doi: 10.1091/mbc.E11-01-0007. PubMed DOI PMC
Geron E., Schejter E.D., Shilo B.Z. Directing exocrine secretory vesicles to the apical membrane by actin cables generated by the formin mDia1. Proc. Natl. Acad. Sci. USA. 2013;110:10652–10657. doi: 10.1073/pnas.1303796110. PubMed DOI PMC
Chhabra E.S., Ramabhadran V., Gerber S.A., Higgs H.N. INF2 is an endoplasmic reticulum-associated formin protein. J. Cell Sci. 2009;122:1430–1440. doi: 10.1242/jcs.040691. PubMed DOI PMC
Ramabhadran V., Korobova F., Rahme G.J., Higgs H.N. Splice variant-specific cellular function of the formin INF2 in maintenance of Golgi architecture. Mol. Biol. Cell. 2011;22:4822–4833. doi: 10.1091/mbc.E11-05-0457. PubMed DOI PMC
Korobova F., Ramabhadran V., Higgs H.N. An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science. 2013;339:464–467. doi: 10.1126/science.1228360. PubMed DOI PMC
Hatch A.L., Gurel P.S., Higgs H.N. Novel roles for actin in mitochondrial fission. J. Cell Sci. 2014;127:4549–4560. doi: 10.1242/jcs.153791. PubMed DOI PMC
Young K.G., Thurston S.F., Copeland S., Smallwood C., Copeland J.W. INF1 is a novel microtubule-associated formin. Mol. Biol. Cell. 2008;19:5168–5180. doi: 10.1091/mbc.E08-05-0469. PubMed DOI PMC
Liao G., Ma X., Liu G. An RNA-zipcode-independent mechanism that localizes Dia1 mRNA to the perinuclear ER through interactions between Dia1 nascent peptide and Rho-GTP. J. Cell Sci. 2011;124:589–599. doi: 10.1242/jcs.072421. PubMed DOI PMC
Liao G., Liu G. Immediate translation of formin DIAPH1 mRNA after its exiting the nucleus is required for its perinuclear localization in fibroblasts. PLoS One. 2013;8 doi: 10.1371/journal.pone.0068190. PubMed DOI PMC
Ramalingam N., Zhao H., Breitsprecher D., Lappalainen P., Faix J., Schleicher M. Phospholipids regulate localization and activity of mDia1 formin. Eur. J. Cell Biol. 2010;89:723–732. doi: 10.1016/j.ejcb.2010.06.001. PubMed DOI
Kerkhoff E. Actin dynamics at intracellular membranes: The Spir/formin nucleator complex. Eur. J. Cell Biol. 2011;90:922–925. doi: 10.1016/j.ejcb.2010.10.011. PubMed DOI
Favery B., Chelysheva L.A., Lebris M., Jammes F., Marmagne A., de Almeida-Engler J., Lecomte P., Vaury C., Arkowitz R.A., Abad P. Arabidopsis formin AtFH6 is a plasma membrane-associated protein upregulated in giant cells induced by parasitic nematodes. Plant Cell. 2004;16:2529–2540. doi: 10.1105/tpc.104.024372. PubMed DOI PMC
Cheung A.Y., Wu H.M. Overexpression of an Arabidopsis formin stimulates supernumerary actin cable formation from pollen tube cell membrane. Plant Cell. 2004;16:257–269. doi: 10.1105/tpc.016550. PubMed DOI PMC
Rosero A., Stillerová L., Schiebertová P., Grunt N., Žárský V., Cvrčková F. Arabidopsis FH1 and FH2 formins affect pavement cell shape by modulating cytoskeleton and membrane dynamics. 2014. Manuscript in preparation. PubMed
Cheung A.Y., Niroomand S., Zou Y., Wu H.M. A transmembrane formin nucleates subapical actin assembly and controls tip-focused growth in pollen tubes. Proc. Natl. Acad. Sci. USA. 2010;107:16390–16395. doi: 10.1073/pnas.1008527107. PubMed DOI PMC
Voinnet O., Rivas S., Mestre P., Baulcombe D. An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J. 2003;33:949–956. doi: 10.1046/j.1365-313X.2003.01676.x. PubMed DOI
Žárský V. (Institute of Experimental Botany, Academy of Sciences of the Czech Republic, and Faculty of Sciences, Charles University, Prague, Czech Republic). 2003. Unpublished experimental data obtained by one of the authors.
Oulehlová D. Ph.D. Thesis. Charles University; Prague, Czech Republic: 2010. Functional studies of selected members of the Arabidopsis formin family.
Rizvi S.A., Neidt E.M., Cui J., Feiger Z., Skau C.T., Gardel M.L., Kozmin S.A., Kovar D.R. Identification and characterization of a small molecule inhibitor of formin-mediated actin assembly. Chem. Biol. 2009;16:1158–1168. doi: 10.1016/j.chembiol.2009.10.006. PubMed DOI PMC
Rosero A., Žárský V., Cvrčková F. AtFH1 formin mutation affects actin filament and microtubule dynamics in Arabidopsis thaliana. J. Exp. Bot. 2013;64:585–597. doi: 10.1093/jxb/ers351. PubMed DOI PMC
Chen X., Friml J. Rho-GTPase-regulated vesicle trafficking in plant cell polarity. Biochem. Soc. Trans. 2014;42:212–218. doi: 10.1042/BST20130269. PubMed DOI
Transmembrane formins as active cargoes of membrane trafficking
SH3Ps-Evolution and Diversity of a Family of Proteins Engaged in Plant Cytokinesis