Relative Contribution of PIN-Containing Secretory Vesicles and Plasma Membrane PINs to the Directed Auxin Transport: Theoretical Estimation

. 2018 Nov 12 ; 19 (11) : . [epub] 20181112

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30424546

Grantová podpora
742985 European Research Council - International
I 3630 Austrian Science Fund FWF - Austria
M 2379 Austrian Science Fund FWF - Austria
M2379-B28 Austrian Science Fund
I03630 Austrian Science Fund

The intercellular transport of auxin is driven by PIN-formed (PIN) auxin efflux carriers. PINs are localized at the plasma membrane (PM) and on constitutively recycling endomembrane vesicles. Therefore, PINs can mediate auxin transport either by direct translocation across the PM or by pumping auxin into secretory vesicles (SVs), leading to its secretory release upon fusion with the PM. Which of these two mechanisms dominates is a matter of debate. Here, we addressed the issue with a mathematical modeling approach. We demonstrate that the efficiency of secretory transport depends on SV size, half-life of PINs on the PM, pH, exocytosis frequency and PIN density. 3D structured illumination microscopy (SIM) was used to determine PIN density on the PM. Combining this data with published values of the other parameters, we show that the transport activity of PINs in SVs would have to be at least 1000× greater than on the PM in order to produce a comparable macroscopic auxin transport. If both transport mechanisms operated simultaneously and PINs were equally active on SVs and PM, the contribution of secretion to the total auxin flux would be negligible. In conclusion, while secretory vesicle-mediated transport of auxin is an intriguing and theoretically possible model, it is unlikely to be a major mechanism of auxin transport in planta.

Zobrazit více v PubMed

Adamowski M., Friml J. PIN-Dependent Auxin Transport: Action, Regulation, and Evolution. Plant Cell. 2015;27:20–32. doi: 10.1105/tpc.114.134874. PubMed DOI PMC

Kleine-Vehn J., Langowski L., Wisniewska J., Dhonukshe P., Brewer P.B., Friml J. Cellular and Molecular Requirements for Polar PIN Targeting and Transcytosis in Plants. Mol. Plant. 2008;1:1056–1066. doi: 10.1093/mp/ssn062. PubMed DOI

Zhou J.-J., Luo J. The PIN-FORMED Auxin Efflux Carriers in Plants. Int. J. Mol. Sci. 2018;19:2759. doi: 10.3390/ijms19092759. PubMed DOI PMC

Geldner N., Friml J., Stierhof Y.-D.D., Jürgens G., Palme K. Auxin Transport Inhibitors Block PIN1 Cycling and Vesicle Trafficking. Nature. 2001;413:425–428. doi: 10.1038/35096571. PubMed DOI

Dhonukshe P., Aniento F., Hwang I., Robinson D.G., Mravec J., Stierhof Y.-D.D., Friml J.J. Clathrin-Mediated Constitutive Endocytosis of PIN Auxin Efflux Carriers in Arabidopsis. Curr. Biol. 2007;17:520–527. doi: 10.1016/j.cub.2007.01.052. PubMed DOI

Adamowski M., Narasimhan M., Kania U., Glanc M., De Jaeger G., Friml J. A Functional Study of AUXILIN-LIKE1 and 2, Two Putative Clathrin Uncoating Factors in Arabidopsis. Plant Cell. 2018 doi: 10.1105/tpc.17.00785. PubMed DOI PMC

Friml J., Palme K. Polar Auxin Transport—Old Questions and New Concepts? Plant Mol. Biol. 2002;49:273–284. doi: 10.1023/A:1015248926412. PubMed DOI

Baluška F., Šamaj J., Menzel D. Polar Transport of Auxin: Carrier-Mediated Flux across the Plasma Membrane or Neurotransmitter-like Secretion? Trends Cell Biol. 2003;13:282–285. doi: 10.1016/S0962-8924(03)00084-9. PubMed DOI

Mancuso S., Marras A.M., Mugnai S., Schlicht M., Zársky V., Li G., Song L., Xue H.-W., Baluska F. Phospholipase Dzeta2 Drives Vesicular Secretion of Auxin for Its Polar Cell-Cell Transport in the Transition Zone of the Root Apex. Plant Signal. Behav. 2007;2:240–244. doi: 10.4161/psb.2.4.4566. PubMed DOI PMC

Mettbach U., Strnad M., Mancuso S., Baluška F. Immunogold-EM Analysis Reveal Brefeldin a-Sensitive Clusters of Auxin in Arabidopsis Root Apex Cells. Commun. Integr. Biol. 2017;10:e1327105. doi: 10.1080/19420889.2017.1327105. PubMed DOI PMC

Schlicht M., Strnad M., Scanlon M.J., Mancuso S., Hochholdinger F., Palme K., Volkmann D., Menzel D., Baluska F. Auxin Immunolocalization Implicates Vesicular Neurotransmitter-like Mode of Polar Auxin Transport in Root Apices. Plant Signal. Behav. 2006;1:122–133. doi: 10.4161/psb.1.3.2759. PubMed DOI PMC

Alpi A., Amrhein N., Bertl A., Blatt M.R., Blumwald E., Cervone F., Dainty J., De Michelis M.I., Epstein E., Galston A.W., et al. Plant Neurobiology: No Brain, No Gain? Trends Plant Sci. 2007;12:135–136. doi: 10.1016/j.tplants.2007.03.002. PubMed DOI

Robinson D.G., Hawes C., Hillmer S., Jürgens G., Schwechheimer C., Stierhof Y.-D., Viotti C. Auxin and Vesicle Traffic. Plant Physiol. 2018;176:1884–1888. doi: 10.1104/PP.17.01510. PubMed DOI PMC

Kramer E.M., Rutschow H.L., Mabie S.S. AuxV: A Database of Auxin Transport Velocities. Trends Plant Sci. 2011;16:461–463. doi: 10.1016/j.tplants.2011.05.003. PubMed DOI

Petrášek J., Friml J. Auxin Transport Routes in Plant Development. Development. 2009;136:2675–2688. doi: 10.1242/dev.030353. PubMed DOI

Rashotte A.M., Poupart J., Waddell C.S., Muday G.K. Transport of the Two Natural Auxins, Indole-3-Butyric Acid and Indole-3-Acetic Acid, in Arabidopsis. Plant Physiol. 2003;133:761–772. doi: 10.1104/pp.103.022582. PubMed DOI PMC

Mitchison G.J. The Dynamics of Auxin Transport. Proc. R. Soc. B Biol. Sci. 1980;209:489–511. doi: 10.1098/rspb.1980.0109. DOI

Rutschow H.L., Baskin T.I., Kramer E.M. The Carrier AUXIN RESISTANT (AUX1) Dominates Auxin Flux into Arabidopsis Protoplasts. New Phytol. 2014;204:536–544. doi: 10.1111/nph.12933. PubMed DOI

Goldsmith M.H., Goldsmith T.H., Martin M.H. Mathematical Analysis of the Chemosmotic Polar Diffusion of Auxin through Plant Tissues. Proc. Natl. Acad. Sci. USA. 1981;78:976–980. doi: 10.1073/pnas.78.2.976. PubMed DOI PMC

Pimpl P., Movafeghi A., Coughlan S., Denecke J., Hillmer S., Robinson D.G. In Situ Localization and in Vitro Induction of Plant COPI-Coated Vesicles. Plant Cell. 2000;12:2219–2236. doi: 10.1105/tpc.12.11.2219. PubMed DOI PMC

Luo Y., Scholl S., Doering A., Zhang Y., Irani N.G., Di Rubbo S., Neumetzler L., Krishnamoorthy P., Van Houtte I., Mylle E., et al. V-ATPase Activity in the TGN/EE Is Required for Exocytosis and Recycling in Arabidopsis. Nat. Plants. 2015;1:15094. doi: 10.1038/nplants.2015.94. PubMed DOI PMC

Shen J., Zeng Y., Zhuang X., Sun L., Yao X., Pimpl P., Jiang L. Organelle PH in the Arabidopsis Endomembrane System. Mol. Plant. 2013;6:1419–1437. doi: 10.1093/mp/sst079. PubMed DOI

Jásik J., Boggetti B., Baluška F., Volkmann D., Gensch T., Rutten T., Altmann T., Schmelzer E. PIN2 Turnover in Arabidopsis Root Epidermal Cells Explored by the Photoconvertible Protein Dendra2. PLoS ONE. 2013;8:e61403. doi: 10.1371/journal.pone.0061403. PubMed DOI PMC

Delbarre A., Muller P., Imhoff V., Guern J. Comparison of Mechanisms Controlling Uptake and Accumulation of 2,4-Dichlorophenoxy Acetic Acid, Naphthalene-1-Acetic Acid, and Indole-3-Acetic Acid in Suspension-Cultured Tobacco Cells. Planta. 1996;198:532–541. doi: 10.1007/BF00262639. PubMed DOI

Swarup R., Kramer E.M., Perry P., Knox K., Leyser H.M.O., Haseloff J., Beemster G.T.S.S., Bhalerao R., Bennett M.J., Leyser O., et al. Root Gravitropism Requires Lateral Root Cap and Epidermal Cells for Transport and Response to a Mobile Auxin Signal. Nat. Cell Biol. 2005;7:1057–1065. doi: 10.1038/ncb1316. PubMed DOI

Johnson A., Vert G. Single Event Resolution of Plant Plasma Membrane Protein Endocytosis by TIRF Microscopy. Front. Plant Sci. 2017;8:612. doi: 10.3389/fpls.2017.00612. PubMed DOI PMC

Konopka C.A., Bednarek S.Y. Comparison of the Dynamics and Functional Redundancy of the Arabidopsis Dynamin-Related Isoforms DRP1A and DRP1C during Plant Development. Plant Physiol. 2008;147:1590–1602. doi: 10.1104/pp.108.116863. PubMed DOI PMC

Konopka C.A., Backues S.K., Bednarek S.Y. Dynamics of Arabidopsis Dynamin-Related Protein 1C and a Clathrin Light Chain at the Plasma Membrane. Plant Cell Online. 2008;20:1363–1380. doi: 10.1105/tpc.108.059428. PubMed DOI PMC

Fendrych M., Akhmanova M., Merrin J., Glanc M., Hagihara S., Takahashi K., Uchida N., Torii K.U., Friml J. Rapid and Reversible Root Growth Inhibition by TIR1 Auxin Signalling. Nat. Plants. 2018;4:453–459. doi: 10.1038/s41477-018-0190-1. PubMed DOI PMC

Zourelidou M., Absmanner B., Weller B., Barbosa I.C., Willige B.C., Fastner A., Streit V., Port S.A., Colcombet J., de la Fuente van Bentem S., et al. Auxin Efflux by PIN-FORMED Proteins Is Activated by Two Different Protein Kinases, D6 PROTEIN KINASE and PINOID. Elife. 2014;3:e02860. doi: 10.7554/eLife.02860. PubMed DOI PMC

Paciorek T., Zazímalová E., Ruthardt N., Petrásek J., Stierhof Y.-D., Kleine-Vehn J., Morris D.A., Emans N., Jürgens G., Geldner N., et al. Auxin Inhibits Endocytosis and Promotes Its Own Efflux from Cells. Nature. 2005;435:1251–1256. doi: 10.1038/nature03633. PubMed DOI

Simon S., Kubeš M., Baster P., Robert S., Dobrev P.I., Friml J., Petrášek J., Zažímalová E. Defining the Selectivity of Processes along the Auxin Response Chain: A Study Using Auxin Analogues. New Phytol. 2013;200:1034–1048. doi: 10.1111/nph.12437. PubMed DOI

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Tinevez J.-Y., Perry N., Schindelin J., Hoopes G.M., Reynolds G.D., Laplantine E., Bednarek S.Y., Shorte S.L., Eliceiri K.W. TrackMate: An Open and Extensible Platform for Single-Particle Tracking. Methods. 2017;115:80–90. doi: 10.1016/j.ymeth.2016.09.016. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...