Correlative Light-Environmental Scanning Electron Microscopy of Plasma Membrane Efflux Carriers of Plant Hormone Auxin
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34680040
PubMed Central
PMC8533460
DOI
10.3390/biom11101407
PII: biom11101407
Knihovny.cz E-zdroje
- Klíčová slova
- auxin carriers, correlative microscopy, nanodomains, plasma membrane,
- MeSH
- Arabidopsis genetika růst a vývoj MeSH
- buněčná membrána genetika metabolismus ultrastruktura MeSH
- konfokální mikroskopie MeSH
- kovové nanočástice chemie MeSH
- kyseliny indoloctové metabolismus MeSH
- mikroskopie elektronová rastrovací * MeSH
- počítačové zpracování obrazu MeSH
- protoplasty metabolismus ultrastruktura MeSH
- regulátory růstu rostlin genetika metabolismus MeSH
- tabák genetika metabolismus ultrastruktura MeSH
- zlato chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyseliny indoloctové MeSH
- regulátory růstu rostlin MeSH
- zlato MeSH
Fluorescence light microscopy provided convincing evidence for the domain organization of plant plasma membrane (PM) proteins. Both peripheral and integral PM proteins show an inhomogeneous distribution within the PM. However, the size of PM nanodomains and protein clusters is too small to accurately determine their dimensions and nano-organization using routine confocal fluorescence microscopy and super-resolution methods. To overcome this limitation, we have developed a novel correlative light electron microscopy method (CLEM) using total internal reflection fluorescence microscopy (TIRFM) and advanced environmental scanning electron microscopy (A-ESEM). Using this technique, we determined the number of auxin efflux carriers from the PINFORMED (PIN) family (NtPIN3b-GFP) within PM nanodomains of tobacco cell PM ghosts. Protoplasts were attached to coverslips and immunostained with anti-GFP primary antibody and secondary antibody conjugated to fluorochrome and gold nanoparticles. After imaging the nanodomains within the PM with TIRFM, the samples were imaged with A-ESEM without further processing, and quantification of the average number of molecules within the nanodomain was performed. Without requiring any post-fixation and coating procedures, this method allows to study details of the organization of auxin carriers and other plant PM proteins.
Zobrazit více v PubMed
Gronnier J., Legrand A., Loquet A., Habenstein B., Germain V., Mongrand S. Mechanisms governing subcompartmentalization of biological membranes. Curr. Opin. Plant Biol. 2019;52:114–123. doi: 10.1016/j.pbi.2019.08.003. PubMed DOI
Malinsky J., Opekarová M., Grossmann G., Tanner W. Membrane microdomains, rafts, and detergent-resistant membranes in plants and fungi. Annu. Rev. Plant Biol. 2013;64:501–529. doi: 10.1146/annurev-arplant-050312-120103. PubMed DOI
Gronnier J., Gerbeau-Pissot P., Germain V., Mongrand S., Simon-Plas F. Divide and rule: Plant plasma membrane organization. Trends Plant Sci. 2018;23:899–917. doi: 10.1016/j.tplants.2018.07.007. PubMed DOI
Ott T. Membrane nanodomains and microdomains in plant–microbe interactions. Curr. Opin. Plant Biol. 2017;40:82–88. doi: 10.1016/j.pbi.2017.08.008. PubMed DOI
Yu M., Cui Y., Zhang X., Li R., Lin J. Organization and dynamics of functional plant membrane microdomains. Cell. Mol. Life Sci. 2020;77:275–287. doi: 10.1007/s00018-019-03270-7. PubMed DOI PMC
Mamode Cassim A., Gouguet P., Gronnier J., Laurent N., Germain V., Grison M., Boutté Y., Gerbeau-Pissot P., Simon-Plas F., Mongrand S. Plant lipids: Key players of plasma membrane organization and function. Prog. Lipid Res. 2019;73:1–27. doi: 10.1016/j.plipres.2018.11.002. PubMed DOI
Smokvarska M., Francis C., Platre M.P., Fiche J.B., Alcon C., Dumont X., Nacry P., Bayle V., Nollmann M., Maurel C., et al. A plasma membrane nanodomain ensures signal specificity during osmotic signaling in plants. Curr. Biol. 2020;30:1–11. doi: 10.1016/j.cub.2020.09.013. PubMed DOI
Furlan A.L., Laurin Y., Botcazon C., Rodríguez-Moraga N., Rippa S., Deleu M., Lins L., Sarazin C., Buchoux S. Contributions and limitations of biophysical approaches to study of the interactions between amphiphilic molecules and the plant plasma membrane. Plants. 2020;9:648. doi: 10.3390/plants9050648. PubMed DOI PMC
Adamowski M., Friml J. PIN-dependent auxin transport: Action, regulation, and evolution. Plant Cell Online. 2015;27:20–32. doi: 10.1105/tpc.114.134874. PubMed DOI PMC
Langowski L., Wabnik K., Li H., Vanneste S., Naramoto S., Tanaka H., Friml J. Cellular mechanisms for cargo delivery and polarity maintenance at different polar domains in plant cells. Cell Discov. 2016;2:16018. doi: 10.1038/celldisc.2016.18. PubMed DOI PMC
Hille S., Akhmanova M., Glanc M., Johnson A., Friml J. Relative contribution of PIN-containing secretory vesicles and plasma membrane pins to the directed auxin transport: Theoretical estimation. Int. J. Mol. Sci. 2018;19:3566. doi: 10.3390/ijms19113566. PubMed DOI PMC
Komis G., Novák D., Ovečka M., Šamajová O., Šamaj J. Advances in Imaging plant cell dynamics. Plant Physiol. 2018;176:80–93. doi: 10.1104/pp.17.00962. PubMed DOI PMC
Komis G., Šamajová O., Ovečka M., Šamaj J. Super-resolution microscopy in plant cell imaging. Trends Plant Sci. 2015;20:834–843. doi: 10.1016/j.tplants.2015.08.013. PubMed DOI
Tapken W., Murphy A.S. Membrane nanodomains in plants: Capturing form, function, and movement. J. Exp. Bot. 2015;66:1573–1586. doi: 10.1093/jxb/erv054. PubMed DOI
Gouguet P., Gronnier J., Legrand A., Perraki A., Jolivet M.D., Deroubaix A.F., Retana S.G., Boudsocq M., Habenstein B., Mongrand S., et al. Connecting the dots: From nanodomains to physiological functions of REMORINs. Plant Physiol. 2021;185:632–649. doi: 10.1093/plphys/kiaa063. PubMed DOI PMC
Daněk M., Angelini J., Malínská K., Andrejch J., Amlerová Z., Kocourková D., Brouzdová J., Valentová O., Martinec J., Petrášek J. Cell wall contributes to the stability of plasma membrane nanodomain organization of Arabidopsis thaliana FLOTILLIN2 and HYPERSENSITIVE INDUCED REACTION1 proteins. Plant J. 2020;101:619–636. doi: 10.1111/tpj.14566. PubMed DOI
McKenna J.F., Rolfe D.J., Webb S.E.D., Tolmie A.F., Botchway S.W., Martin-Fernandez M.L., Hawes C., Runions J. The cell wall regulates dynamics and size of plasma-membrane nanodomains in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2019;116:12857–12862. doi: 10.1073/pnas.1819077116. PubMed DOI PMC
Vizcay-Barrena G., Webb S.E.D., Martin-Fernandez M.L., Wilson Z.A. Subcellular and single-molecule imaging of plant fluorescent proteins using total internal reflection fluorescence microscopy (TIRFM) J. Exp. Bot. 2011;62:5419–5428. doi: 10.1093/jxb/err212. PubMed DOI PMC
Johnson A., Vert G. Single event resolution of plant plasma membrane protein endocytosis by TIRF microscopy. Front. Plant Sci. 2017;8:1–11. doi: 10.3389/fpls.2017.00612. PubMed DOI PMC
Lukeš T., Glatzová D., Kvíčalová Z., Levet F., Benda A., Letschert S., Sauer M., Brdička T., Lasser T., Cebecauer M. Quantifying protein densities on cell membranes using super-resolution optical fluctuation imaging. Nat. Commun. 2017;8:1731. doi: 10.1038/s41467-017-01857-x. PubMed DOI PMC
Gustafsson N., Culley S., Ashdown G., Owen D.M., Pereira P.M., Henriques R. Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations. Nat. Commun. 2016;7:1–9. doi: 10.1038/ncomms12471. PubMed DOI PMC
Marion J., Le Bars R., Satiat-Jeunemaitre B., Boulogne C. Optimizing CLEM protocols for plants cells: GMA embedding and cryosections as alternatives for preservation of GFP fluorescence in Arabidopsis roots. J. Struct. Biol. 2017;198:196–202. doi: 10.1016/j.jsb.2017.03.008. PubMed DOI
Liu Z., Gao J., Cui Y., Klumpe S., Xiang Y., Erdmann P.S., Jiang L. Membrane imaging in the plant endomembrane system. Plant Physiol. 2021;185:562–576. doi: 10.1093/plphys/kiaa040. PubMed DOI PMC
Jahn K.A., Barton D.A., Kobayashi K., Ratinac K.R., Overall R.L., Braet F. Correlative microscopy: Providing new understanding in the biomedical and plant sciences. Micron. 2012;43:565–582. doi: 10.1016/j.micron.2011.12.004. PubMed DOI
Lv X., Jing Y., Wu H., Lin J. Tracking tonoplast protein behaviors in intact vacuoles isolated from arabidopsis leaves. Mol. Plant. 2017;10:349–352. doi: 10.1016/j.molp.2016.10.015. PubMed DOI
Wang P., Kang B.-H. Plant Endosomes. Volume 2177. Humana; New York, NY, USA: 2020. Correlative light and electron microscopy imaging of the plant trans-golgi network; pp. 59–67. PubMed
Neděla V., Tihlaříková E., Hřib J. The low-temperature method for study of coniferous tissues in the environmental scanning electron microscope. Microsc. Res. Tech. 2015;78:13–21. doi: 10.1002/jemt.22439. PubMed DOI
Tihlaříková E., Neděla V., Đorđević B. In-Situ preparation of plant samples in ESEM for energy dispersive x-ray microanalysis and repetitive observation in SEM and ESEM. Sci. Rep. 2019;9:1–8. doi: 10.1038/s41598-019-38835-w. PubMed DOI PMC
Nagata T., Nemoto Y., Hasezawa S. Tobacco BY-2 cell line as the “HeLa” cell in the cell biology of higher plants. Int. Rev. Cytol. 1992;132:1–30.
Müller K., Hošek P., Laňková M., Vosolsobě S., Malínská K., Čarná M., Fílová M., Dobrev P.I., Helusová M., Hoyerová K., et al. Transcription of specific auxin efflux and influx carriers drives auxin homeostasis in tobacco cells. Plant J. 2019;100:627–640. doi: 10.1111/tpj.14474. PubMed DOI
Sonobe S., Takahashi S. Association of microtubules with the plasma membrane of tobacco BY-2 Cells in Vitro. Plant Cell Physiol. 1994;35:451–460. doi: 10.1093/oxfordjournals.pcp.a078615. DOI
Krtková J., Zimmermann A., Schwarzerová K., Nick P. Hsp90 binds microtubules and is involved in the reorganization of the microtubular network in angiosperms. J. Plant Physiol. 2012;169:1329–1339. doi: 10.1016/j.jplph.2012.06.010. PubMed DOI
Polishchuk E.V., Polishchuk R.S. Analysis of Golgi Complex Function Using Correlative Light-Electron Microscopy. 1st ed. Volume118. Elsevier Inc.; Amsterdam, The Netherlands: 2013. PubMed
Neděla V., Tihlaříková E., Runštuk J., Hudec J. High-efficiency detector of secondary and backscattered electrons for low-dose imaging in the ESEM. Ultramicroscopy. 2018;184:1–11. doi: 10.1016/j.ultramic.2017.08.003. PubMed DOI
Li H., von Wangenheim D., Zhang X., Tan S., Darwish-Miranda N., Naramoto S., Wabnik K., De Rycke R., Kaufmann W.A., Gütl D., et al. Cellular requirements for PIN polar cargo clustering in Arabidopsis thaliana. New Phytol. 2021;229:351–369. doi: 10.1111/nph.16887. PubMed DOI PMC
Feraru E., Feraru M.I., Kleine-Vehn J., Martinière A., Mouille G., Vanneste S., Vernhettes S., Runions J., Friml J. PIN polarity maintenance by the cell wall in Arabidopsis. Curr. Biol. 2011;21:338–343. doi: 10.1016/j.cub.2011.01.036. PubMed DOI
Martiniere A., Lavagi I., Nageswaran G., Rolfe D.J., Maneta-Peyret L., Luu D.-T., Botchway S.W., Webb S.E.D., Mongrand S., Maurel C., et al. Cell wall constrains lateral diffusion of plant plasma-membrane proteins. Proc. Natl. Acad. Sci. USA. 2012;109:12805–12810. doi: 10.1073/pnas.1202040109. PubMed DOI PMC
Noack L.C., Bayle V., Armengot L., Rozier F., Mamode-Cassim A., Stevens F.D., Caillaud M.-C., Munnik T., Mongrand S., Pleskot R., et al. A nanodomain-anchored scaffolding complex is required for the function and localization of phosphatidylinositol 4-kinase alpha in plants. Plant Cell. 2021;12:56. doi: 10.1093/plcell/koab135. PubMed DOI PMC
Platre M.P., Bayle V., Armengot L., Bareille J., del Marquès-Bueno M., Creff A., Maneta-Peyret L., Fiche J.-B., Nollmann M., Miège C., et al. Developmental control of plant Rho GTPase nano-organization by the lipid phosphatidylserine. Science. 2019;364:57–62. doi: 10.1126/science.aav9959. PubMed DOI
Gronnier J., Crowet J.-M., Habenstein B., Nasir M.N., Bayle V., Hosy E., Platre M.P., Gouguet P., Raffaele S., Martinez D., et al. Structural basis for plant plasma membrane protein dynamics and organization into functional nanodomains. Elife. 2017;6:1–24. doi: 10.7554/eLife.26404. PubMed DOI PMC
Ke M., Ma Z., Wang D., Sun Y., Wen C., Huang D., Chen Z., Yang L., Tan S., Li R., et al. Salicylic acid regulates PIN2 auxin transporter hyperclustering and root gravitropic growth via Remorin-dependent lipid nanodomain organisation in Arabidopsis thaliana. New Phytol. 2021;229:963–978. doi: 10.1111/nph.16915. PubMed DOI PMC
Pan X., Fang L., Liu J., Senay-Aras B., Lin W., Zheng S., Zhang T., Guo J., Manor U., Van Norman J., et al. Auxin-induced signaling protein nanoclustering contributes to cell polarity formation. Nat. Commun. 2020;11:1–14. doi: 10.1038/s41467-020-17602-w. PubMed DOI PMC
Tan S., Zhang X., Kong W., Yang X.-L., Molnár G., Vondráková Z., Filepová R., Petrášek J., Friml J., Xue H.-W. The lipid code-dependent phosphoswitch PDK1–D6PK activates PIN-mediated auxin efflux in Arabidopsis. Nat. Plants. 2020;6:556–569. doi: 10.1038/s41477-020-0648-9. PubMed DOI
Shaw R., Tian X., Xu J. Single-cell transcriptome analysis in plants: Advances and challenges. Mol. Plant. 2021;14:115–126. doi: 10.1016/j.molp.2020.10.012. PubMed DOI
Van Elsland D.M., Bos E., Pawlak J.B., Overkleeft H.S., Koster A.J., Van Kasteren S.I. Correlative light and electron microscopy reveals discrepancy between gold and fluorescence labelling. J. Microsc. 2017;267:309–317. doi: 10.1111/jmi.12567. PubMed DOI
Prost S., Kishen R.E.B., Kluth D.C., Bellamy C.O.C. Working with commercially available quantum dots for immunofluorescence on tissue sections. PLoS ONE. 2016;11:e0163856. doi: 10.1371/journal.pone.0163856. PubMed DOI PMC
Ellisman M.H., Deerinck T.J., Shu X., Sosinsky G.E. Picking faces out of a crowd: Genetic labels for identification of proteins in correlated light and electron microscopy imaging. Methods Cell Biol. 2012;111:139–155. doi: 10.1016/B978-0-12-416026-2.00008-X. PubMed DOI PMC
Hauser M., Wojcik M., Kim D., Mahmoudi M., Li W., Xu K. Correlative super-resolution microscopy: New dimensions and new opportunities. Chem. Rev. 2017;117:7428–7456. doi: 10.1021/acs.chemrev.6b00604. PubMed DOI
Neděla V., Tihlaříková E., Maxa J., Imrichová K., Bučko M., Gemeiner P. Simulation-based optimisation of thermodynamic conditions in the ESEM for dynamical in-situ study of spherical polyelectrolyte complex particles in their native state. Ultramicroscopy. 2020;211:112954. doi: 10.1016/j.ultramic.2020.112954. PubMed DOI
Lace B., Prandi C. Shaping Small bioactive molecules to untangle their biological function: A focus on fluorescent plant hormones. Mol. Plant. 2016;9:1099–1118. doi: 10.1016/j.molp.2016.06.011. PubMed DOI
Peckys D.B., Korf U., de Jonge N. Local variations of HER2 dimerization in breast cancer cells discovered by correlative fluorescence and liquid electron microscopy. Sci. Adv. 2015;1:e1500165. doi: 10.1126/sciadv.1500165. PubMed DOI PMC
CFD Analyses of Density Gradients under Conditions of Supersonic Flow at Low Pressures