Correlative Light-Environmental Scanning Electron Microscopy of Plasma Membrane Efflux Carriers of Plant Hormone Auxin

. 2021 Sep 26 ; 11 (10) : . [epub] 20210926

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34680040

Fluorescence light microscopy provided convincing evidence for the domain organization of plant plasma membrane (PM) proteins. Both peripheral and integral PM proteins show an inhomogeneous distribution within the PM. However, the size of PM nanodomains and protein clusters is too small to accurately determine their dimensions and nano-organization using routine confocal fluorescence microscopy and super-resolution methods. To overcome this limitation, we have developed a novel correlative light electron microscopy method (CLEM) using total internal reflection fluorescence microscopy (TIRFM) and advanced environmental scanning electron microscopy (A-ESEM). Using this technique, we determined the number of auxin efflux carriers from the PINFORMED (PIN) family (NtPIN3b-GFP) within PM nanodomains of tobacco cell PM ghosts. Protoplasts were attached to coverslips and immunostained with anti-GFP primary antibody and secondary antibody conjugated to fluorochrome and gold nanoparticles. After imaging the nanodomains within the PM with TIRFM, the samples were imaged with A-ESEM without further processing, and quantification of the average number of molecules within the nanodomain was performed. Without requiring any post-fixation and coating procedures, this method allows to study details of the organization of auxin carriers and other plant PM proteins.

Zobrazit více v PubMed

Gronnier J., Legrand A., Loquet A., Habenstein B., Germain V., Mongrand S. Mechanisms governing subcompartmentalization of biological membranes. Curr. Opin. Plant Biol. 2019;52:114–123. doi: 10.1016/j.pbi.2019.08.003. PubMed DOI

Malinsky J., Opekarová M., Grossmann G., Tanner W. Membrane microdomains, rafts, and detergent-resistant membranes in plants and fungi. Annu. Rev. Plant Biol. 2013;64:501–529. doi: 10.1146/annurev-arplant-050312-120103. PubMed DOI

Gronnier J., Gerbeau-Pissot P., Germain V., Mongrand S., Simon-Plas F. Divide and rule: Plant plasma membrane organization. Trends Plant Sci. 2018;23:899–917. doi: 10.1016/j.tplants.2018.07.007. PubMed DOI

Ott T. Membrane nanodomains and microdomains in plant–microbe interactions. Curr. Opin. Plant Biol. 2017;40:82–88. doi: 10.1016/j.pbi.2017.08.008. PubMed DOI

Yu M., Cui Y., Zhang X., Li R., Lin J. Organization and dynamics of functional plant membrane microdomains. Cell. Mol. Life Sci. 2020;77:275–287. doi: 10.1007/s00018-019-03270-7. PubMed DOI PMC

Mamode Cassim A., Gouguet P., Gronnier J., Laurent N., Germain V., Grison M., Boutté Y., Gerbeau-Pissot P., Simon-Plas F., Mongrand S. Plant lipids: Key players of plasma membrane organization and function. Prog. Lipid Res. 2019;73:1–27. doi: 10.1016/j.plipres.2018.11.002. PubMed DOI

Smokvarska M., Francis C., Platre M.P., Fiche J.B., Alcon C., Dumont X., Nacry P., Bayle V., Nollmann M., Maurel C., et al. A plasma membrane nanodomain ensures signal specificity during osmotic signaling in plants. Curr. Biol. 2020;30:1–11. doi: 10.1016/j.cub.2020.09.013. PubMed DOI

Furlan A.L., Laurin Y., Botcazon C., Rodríguez-Moraga N., Rippa S., Deleu M., Lins L., Sarazin C., Buchoux S. Contributions and limitations of biophysical approaches to study of the interactions between amphiphilic molecules and the plant plasma membrane. Plants. 2020;9:648. doi: 10.3390/plants9050648. PubMed DOI PMC

Adamowski M., Friml J. PIN-dependent auxin transport: Action, regulation, and evolution. Plant Cell Online. 2015;27:20–32. doi: 10.1105/tpc.114.134874. PubMed DOI PMC

Langowski L., Wabnik K., Li H., Vanneste S., Naramoto S., Tanaka H., Friml J. Cellular mechanisms for cargo delivery and polarity maintenance at different polar domains in plant cells. Cell Discov. 2016;2:16018. doi: 10.1038/celldisc.2016.18. PubMed DOI PMC

Hille S., Akhmanova M., Glanc M., Johnson A., Friml J. Relative contribution of PIN-containing secretory vesicles and plasma membrane pins to the directed auxin transport: Theoretical estimation. Int. J. Mol. Sci. 2018;19:3566. doi: 10.3390/ijms19113566. PubMed DOI PMC

Komis G., Novák D., Ovečka M., Šamajová O., Šamaj J. Advances in Imaging plant cell dynamics. Plant Physiol. 2018;176:80–93. doi: 10.1104/pp.17.00962. PubMed DOI PMC

Komis G., Šamajová O., Ovečka M., Šamaj J. Super-resolution microscopy in plant cell imaging. Trends Plant Sci. 2015;20:834–843. doi: 10.1016/j.tplants.2015.08.013. PubMed DOI

Tapken W., Murphy A.S. Membrane nanodomains in plants: Capturing form, function, and movement. J. Exp. Bot. 2015;66:1573–1586. doi: 10.1093/jxb/erv054. PubMed DOI

Gouguet P., Gronnier J., Legrand A., Perraki A., Jolivet M.D., Deroubaix A.F., Retana S.G., Boudsocq M., Habenstein B., Mongrand S., et al. Connecting the dots: From nanodomains to physiological functions of REMORINs. Plant Physiol. 2021;185:632–649. doi: 10.1093/plphys/kiaa063. PubMed DOI PMC

Daněk M., Angelini J., Malínská K., Andrejch J., Amlerová Z., Kocourková D., Brouzdová J., Valentová O., Martinec J., Petrášek J. Cell wall contributes to the stability of plasma membrane nanodomain organization of Arabidopsis thaliana FLOTILLIN2 and HYPERSENSITIVE INDUCED REACTION1 proteins. Plant J. 2020;101:619–636. doi: 10.1111/tpj.14566. PubMed DOI

McKenna J.F., Rolfe D.J., Webb S.E.D., Tolmie A.F., Botchway S.W., Martin-Fernandez M.L., Hawes C., Runions J. The cell wall regulates dynamics and size of plasma-membrane nanodomains in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2019;116:12857–12862. doi: 10.1073/pnas.1819077116. PubMed DOI PMC

Vizcay-Barrena G., Webb S.E.D., Martin-Fernandez M.L., Wilson Z.A. Subcellular and single-molecule imaging of plant fluorescent proteins using total internal reflection fluorescence microscopy (TIRFM) J. Exp. Bot. 2011;62:5419–5428. doi: 10.1093/jxb/err212. PubMed DOI PMC

Johnson A., Vert G. Single event resolution of plant plasma membrane protein endocytosis by TIRF microscopy. Front. Plant Sci. 2017;8:1–11. doi: 10.3389/fpls.2017.00612. PubMed DOI PMC

Lukeš T., Glatzová D., Kvíčalová Z., Levet F., Benda A., Letschert S., Sauer M., Brdička T., Lasser T., Cebecauer M. Quantifying protein densities on cell membranes using super-resolution optical fluctuation imaging. Nat. Commun. 2017;8:1731. doi: 10.1038/s41467-017-01857-x. PubMed DOI PMC

Gustafsson N., Culley S., Ashdown G., Owen D.M., Pereira P.M., Henriques R. Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations. Nat. Commun. 2016;7:1–9. doi: 10.1038/ncomms12471. PubMed DOI PMC

Marion J., Le Bars R., Satiat-Jeunemaitre B., Boulogne C. Optimizing CLEM protocols for plants cells: GMA embedding and cryosections as alternatives for preservation of GFP fluorescence in Arabidopsis roots. J. Struct. Biol. 2017;198:196–202. doi: 10.1016/j.jsb.2017.03.008. PubMed DOI

Liu Z., Gao J., Cui Y., Klumpe S., Xiang Y., Erdmann P.S., Jiang L. Membrane imaging in the plant endomembrane system. Plant Physiol. 2021;185:562–576. doi: 10.1093/plphys/kiaa040. PubMed DOI PMC

Jahn K.A., Barton D.A., Kobayashi K., Ratinac K.R., Overall R.L., Braet F. Correlative microscopy: Providing new understanding in the biomedical and plant sciences. Micron. 2012;43:565–582. doi: 10.1016/j.micron.2011.12.004. PubMed DOI

Lv X., Jing Y., Wu H., Lin J. Tracking tonoplast protein behaviors in intact vacuoles isolated from arabidopsis leaves. Mol. Plant. 2017;10:349–352. doi: 10.1016/j.molp.2016.10.015. PubMed DOI

Wang P., Kang B.-H. Plant Endosomes. Volume 2177. Humana; New York, NY, USA: 2020. Correlative light and electron microscopy imaging of the plant trans-golgi network; pp. 59–67. PubMed

Neděla V., Tihlaříková E., Hřib J. The low-temperature method for study of coniferous tissues in the environmental scanning electron microscope. Microsc. Res. Tech. 2015;78:13–21. doi: 10.1002/jemt.22439. PubMed DOI

Tihlaříková E., Neděla V., Đorđević B. In-Situ preparation of plant samples in ESEM for energy dispersive x-ray microanalysis and repetitive observation in SEM and ESEM. Sci. Rep. 2019;9:1–8. doi: 10.1038/s41598-019-38835-w. PubMed DOI PMC

Nagata T., Nemoto Y., Hasezawa S. Tobacco BY-2 cell line as the “HeLa” cell in the cell biology of higher plants. Int. Rev. Cytol. 1992;132:1–30.

Müller K., Hošek P., Laňková M., Vosolsobě S., Malínská K., Čarná M., Fílová M., Dobrev P.I., Helusová M., Hoyerová K., et al. Transcription of specific auxin efflux and influx carriers drives auxin homeostasis in tobacco cells. Plant J. 2019;100:627–640. doi: 10.1111/tpj.14474. PubMed DOI

Sonobe S., Takahashi S. Association of microtubules with the plasma membrane of tobacco BY-2 Cells in Vitro. Plant Cell Physiol. 1994;35:451–460. doi: 10.1093/oxfordjournals.pcp.a078615. DOI

Krtková J., Zimmermann A., Schwarzerová K., Nick P. Hsp90 binds microtubules and is involved in the reorganization of the microtubular network in angiosperms. J. Plant Physiol. 2012;169:1329–1339. doi: 10.1016/j.jplph.2012.06.010. PubMed DOI

Polishchuk E.V., Polishchuk R.S. Analysis of Golgi Complex Function Using Correlative Light-Electron Microscopy. 1st ed. Volume118. Elsevier Inc.; Amsterdam, The Netherlands: 2013. PubMed

Neděla V., Tihlaříková E., Runštuk J., Hudec J. High-efficiency detector of secondary and backscattered electrons for low-dose imaging in the ESEM. Ultramicroscopy. 2018;184:1–11. doi: 10.1016/j.ultramic.2017.08.003. PubMed DOI

Li H., von Wangenheim D., Zhang X., Tan S., Darwish-Miranda N., Naramoto S., Wabnik K., De Rycke R., Kaufmann W.A., Gütl D., et al. Cellular requirements for PIN polar cargo clustering in Arabidopsis thaliana. New Phytol. 2021;229:351–369. doi: 10.1111/nph.16887. PubMed DOI PMC

Feraru E., Feraru M.I., Kleine-Vehn J., Martinière A., Mouille G., Vanneste S., Vernhettes S., Runions J., Friml J. PIN polarity maintenance by the cell wall in Arabidopsis. Curr. Biol. 2011;21:338–343. doi: 10.1016/j.cub.2011.01.036. PubMed DOI

Martiniere A., Lavagi I., Nageswaran G., Rolfe D.J., Maneta-Peyret L., Luu D.-T., Botchway S.W., Webb S.E.D., Mongrand S., Maurel C., et al. Cell wall constrains lateral diffusion of plant plasma-membrane proteins. Proc. Natl. Acad. Sci. USA. 2012;109:12805–12810. doi: 10.1073/pnas.1202040109. PubMed DOI PMC

Noack L.C., Bayle V., Armengot L., Rozier F., Mamode-Cassim A., Stevens F.D., Caillaud M.-C., Munnik T., Mongrand S., Pleskot R., et al. A nanodomain-anchored scaffolding complex is required for the function and localization of phosphatidylinositol 4-kinase alpha in plants. Plant Cell. 2021;12:56. doi: 10.1093/plcell/koab135. PubMed DOI PMC

Platre M.P., Bayle V., Armengot L., Bareille J., del Marquès-Bueno M., Creff A., Maneta-Peyret L., Fiche J.-B., Nollmann M., Miège C., et al. Developmental control of plant Rho GTPase nano-organization by the lipid phosphatidylserine. Science. 2019;364:57–62. doi: 10.1126/science.aav9959. PubMed DOI

Gronnier J., Crowet J.-M., Habenstein B., Nasir M.N., Bayle V., Hosy E., Platre M.P., Gouguet P., Raffaele S., Martinez D., et al. Structural basis for plant plasma membrane protein dynamics and organization into functional nanodomains. Elife. 2017;6:1–24. doi: 10.7554/eLife.26404. PubMed DOI PMC

Ke M., Ma Z., Wang D., Sun Y., Wen C., Huang D., Chen Z., Yang L., Tan S., Li R., et al. Salicylic acid regulates PIN2 auxin transporter hyperclustering and root gravitropic growth via Remorin-dependent lipid nanodomain organisation in Arabidopsis thaliana. New Phytol. 2021;229:963–978. doi: 10.1111/nph.16915. PubMed DOI PMC

Pan X., Fang L., Liu J., Senay-Aras B., Lin W., Zheng S., Zhang T., Guo J., Manor U., Van Norman J., et al. Auxin-induced signaling protein nanoclustering contributes to cell polarity formation. Nat. Commun. 2020;11:1–14. doi: 10.1038/s41467-020-17602-w. PubMed DOI PMC

Tan S., Zhang X., Kong W., Yang X.-L., Molnár G., Vondráková Z., Filepová R., Petrášek J., Friml J., Xue H.-W. The lipid code-dependent phosphoswitch PDK1–D6PK activates PIN-mediated auxin efflux in Arabidopsis. Nat. Plants. 2020;6:556–569. doi: 10.1038/s41477-020-0648-9. PubMed DOI

Shaw R., Tian X., Xu J. Single-cell transcriptome analysis in plants: Advances and challenges. Mol. Plant. 2021;14:115–126. doi: 10.1016/j.molp.2020.10.012. PubMed DOI

Van Elsland D.M., Bos E., Pawlak J.B., Overkleeft H.S., Koster A.J., Van Kasteren S.I. Correlative light and electron microscopy reveals discrepancy between gold and fluorescence labelling. J. Microsc. 2017;267:309–317. doi: 10.1111/jmi.12567. PubMed DOI

Prost S., Kishen R.E.B., Kluth D.C., Bellamy C.O.C. Working with commercially available quantum dots for immunofluorescence on tissue sections. PLoS ONE. 2016;11:e0163856. doi: 10.1371/journal.pone.0163856. PubMed DOI PMC

Ellisman M.H., Deerinck T.J., Shu X., Sosinsky G.E. Picking faces out of a crowd: Genetic labels for identification of proteins in correlated light and electron microscopy imaging. Methods Cell Biol. 2012;111:139–155. doi: 10.1016/B978-0-12-416026-2.00008-X. PubMed DOI PMC

Hauser M., Wojcik M., Kim D., Mahmoudi M., Li W., Xu K. Correlative super-resolution microscopy: New dimensions and new opportunities. Chem. Rev. 2017;117:7428–7456. doi: 10.1021/acs.chemrev.6b00604. PubMed DOI

Neděla V., Tihlaříková E., Maxa J., Imrichová K., Bučko M., Gemeiner P. Simulation-based optimisation of thermodynamic conditions in the ESEM for dynamical in-situ study of spherical polyelectrolyte complex particles in their native state. Ultramicroscopy. 2020;211:112954. doi: 10.1016/j.ultramic.2020.112954. PubMed DOI

Lace B., Prandi C. Shaping Small bioactive molecules to untangle their biological function: A focus on fluorescent plant hormones. Mol. Plant. 2016;9:1099–1118. doi: 10.1016/j.molp.2016.06.011. PubMed DOI

Peckys D.B., Korf U., de Jonge N. Local variations of HER2 dimerization in breast cancer cells discovered by correlative fluorescence and liquid electron microscopy. Sci. Adv. 2015;1:e1500165. doi: 10.1126/sciadv.1500165. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

CFD Analyses of Density Gradients under Conditions of Supersonic Flow at Low Pressures

. 2024 Sep 14 ; 24 (18) : . [epub] 20240914

Advanced environmental scanning electron microscopy reveals natural surface nano-morphology of condensed mitotic chromosomes in their native state

. 2024 Jun 06 ; 14 (1) : 12998. [epub] 20240606

Mathematical-Physics Analyses of the Nozzle Shaping at the Aperture Gas Outlet into Free Space under ESEM Pressure Conditions

. 2024 May 26 ; 24 (11) : . [epub] 20240526

Mathematical Physics Analysis of Nozzle Shaping at the Gas Outlet from the Aperture to the Differentially Pumped Chamber in Environmental Scanning Electron Microscopy (ESEM)

. 2024 May 20 ; 24 (10) : . [epub] 20240520

The Impact of Nozzle Opening Thickness on Flow Characteristics and Primary Electron Beam Scattering in an Environmental Scanning Electron Microscope

. 2024 Mar 28 ; 24 (7) : . [epub] 20240328

Comparative Analysis of Supersonic Flow in Atmospheric and Low Pressure in the Region of Shock Waves Creation for Electron Microscopy

. 2023 Dec 11 ; 23 (24) : . [epub] 20231211

Impact of Supersonic Flow in Scintillator Detector Apertures on the Resulting Pumping Effect of the Vacuum Chambers

. 2023 May 18 ; 23 (10) : . [epub] 20230518

Slip Flow Analysis in an Experimental Chamber Simulating Differential Pumping in an Environmental Scanning Electron Microscope

. 2022 Nov 22 ; 22 (23) : . [epub] 20221122

Decellularized Pancreatic Tail as Matrix for Pancreatic Islet Transplantation into the Greater Omentum in Rats

. 2022 Sep 30 ; 13 (4) : . [epub] 20220930

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace