Mathematical Physics Analysis of Nozzle Shaping at the Gas Outlet from the Aperture to the Differentially Pumped Chamber in Environmental Scanning Electron Microscopy (ESEM)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
38794096
PubMed Central
PMC11125105
DOI
10.3390/s24103243
PII: s24103243
Knihovny.cz E-zdroje
- Klíčová slova
- Ansys Fluent, CFD, ESEM, critical flow, nozzle, numerical simulation,
- Publikační typ
- časopisecké články MeSH
A combination of experimental measurement preparations using pressure and temperature sensors in conjunction with the theory of one-dimensional isentropic flow and mathematical physics analyses is presented as a tool for analysis in this paper. Furthermore, the subsequent development of a nozzle for use in environmental electron microscopy between the specimen chamber and the differentially pumped chamber is described. Based on experimental measurements, an analysis of the impact of the nozzle shaping located behind the aperture on the character of the supersonic flow and the resulting dispersion of the electron beam passing through the differential pumped chamber is carried out on the determined pressure ratio using a combination of theory and mathematical physics analyses. The results show that nozzle shapes causing under-expanded gas outflow from the aperture to the nozzle have a worse impact on the dispersion of the primary electron beam. This is due to the flow velocity control. The controlled reduction in the static pressure curve on the primary electron beam path thus causes a significantly higher course of electron dispersion values than variants with shapes causing over-expanded gas outflow.
Zobrazit více v PubMed
Maxa J., Šabacká P., Mazal J., Neděla V., Binar T., Bača P., Talár J., Bayer R., Čudek P. The Impact of Nozzle Opening Thickness on Flow Characteristics and Primary Electron Beam Scattering in an Environmental Scanning Electron Microscope. Sensors. 2024;24:2166. doi: 10.3390/s24072166. PubMed DOI PMC
Šabacká P., Neděla V., Maxa J., Bayer R. Application of Prandtl’s Theory in the Design of an Experimental Chamber for Static Pressure Measurements. Sensors. 2021;21:6849. doi: 10.3390/s21206849. PubMed DOI PMC
Danilatos G.D. Electron scattering cross-section measurements in ESEM. Micron. 2013;45:1–16. doi: 10.1016/j.micron.2012.10.002. PubMed DOI
Stelate A., Tihlaříková E., Schwarzerová K., Neděla V., Petrášek J. Correlative Light-Environmental Scanning Electron Microscopy of Plasma Membrane Efflux Carriers of Plant Hormone Auxin. Biomolecules. 2021;11:1407. doi: 10.3390/biom11101407. PubMed DOI PMC
Vaněk J., Mach R. Electrical conductivity of reduced graphene oxide thin-film layers. ECS Trans. 2018;87:253. doi: 10.1149/08701.0253ecst. DOI
Dordevic B., Neděla V., Tihlaříková E., Trojan V., Havel L. Effects of copper and arsenic stress on the development of Norway spruce somatic embryos and their visualization with the environmental scanning electron microscope. New Biotechnol. 2019;48:35–43. doi: 10.1016/j.nbt.2018.05.005. PubMed DOI
Neděla V., Tihlaříková E., Maxa J., Imrichová K., Bučko M., Gemeiner P. Simulation-based optimisation of thermodynamic conditions in the ESEM for dynamical in-situ study of spherical polyelectrolyte complex particles in their native state. Ultramicroscopy. 2020;211:112954. doi: 10.1016/j.ultramic.2020.112954. PubMed DOI
Rybár R., Kudelas D., Beer M., Horodníková J. Elimination of Thermal Bridges in the Construction of a Flat Low-Pressure Solar Collector by Means of a Vacuum Thermal Insulation Bushing. ASME J. Sol. Energy Eng. 2015;137:054501. doi: 10.1115/1.4030230. DOI
Li T., Song Q., He G., Xia H., Li H., Gui J., Dang H. A Method for Detecting the Vacuum Degree of Vacuum Glass Based on Digital Holography. Sensors. 2023;23:2468. doi: 10.3390/s23052468. PubMed DOI PMC
Dutta P.P., Benken A.C., Li T., Ordonez-Varela J.R., Gianchandani Y.B. Passive Wireless Pressure Gradient Measurement System for Fluid Flow Analysis. Sensors. 2023;23:2525. doi: 10.3390/s23052525. PubMed DOI PMC
Danilatos G.D. ESEM modifications to LEO SUPRA 35 VP FESEM. Micron. 2013;44:238–245. doi: 10.1016/j.micron.2012.06.014. PubMed DOI
Danilatos G.D. Velocity and ejector-jet assisted differential pumping: Novel design stages for environmental SEM. Micron. 2012;43:600–611. doi: 10.1016/j.micron.2011.10.023. DOI
Danilatos G.D. Gas-flow field in the environmental SEM; Proceedings of the Annual Meeting of the Electron Microscopy Society of America; Boston, MA, USA. 16–21 August 1992; p. 50.
Danilatos G.D. Electron beam current loss at the high-vacuum-high-pressure boundary in the environmental scanning electron microscope. Microsc. Microanal. 2001;7:397–406. doi: 10.1007/s10005-001-0008-0. DOI
Danilatos G.D. Electron Beam Loss in Commercial Esem; Proceedings of the 16th Australian Conference on Electron Microscopy; Canberra, Australia. 6–11 February 2000; pp. 1–18.
Danilatos G.D., Rattenberger J., Dracopoulos V. Beam transfer characteristics of a commercial environmental SEM and a low vacuum SEM. J. Microsc. 2010;242:166–180. doi: 10.1111/j.1365-2818.2010.03455.x. PubMed DOI
Danilatos G.D. Figure of merit for environmental SEM and its implications. J. Microsc. 2011;244:159–169. doi: 10.1111/j.1365-2818.2011.03521.x. PubMed DOI
Danilatos G.D. Optimum beam transfer in the environmental scanning electron microscope. J. Microsc. 2009;234:26–37. doi: 10.1111/j.1365-2818.2009.03148.x. PubMed DOI
Wu R., Nie S., Ji H., Wang Y., Lin L., Yin F. Effect of multi-parameter optimization of water-laser coupling device and nozzle geometry on the stability of water-guided laser beam. Phys. Fluids. 2024;36:013620. doi: 10.1063/5.0190127. DOI
Gong C., Ou M., Jia W. The effect of nozzle configuration on the evolution of jet surface structure. Results Phys. 2019;15:102572. doi: 10.1016/j.rinp.2019.102572. DOI
Afkhami S., Fouladi N. Gas dynamics at starting and terminating phase of a supersonic exhaust diffuser with a conical nozzle. Phys. Fluids. 2024;36:036123. doi: 10.1063/5.0197296. DOI
Nasuti F., Onofri M. Shock structure in separated nozzle flows. Shock Waves. 2008;19:229–237. doi: 10.1007/s00193-008-0173-7. DOI
Danilatos G.D. Optimising the beam transfer in ESEM; Proceedings of the 21st Australian Conference on Microscopy & Microanalysis; Brisbane, Australia. 11–15 July 2010.
Sorbo S., Basile A., Castaldo Cobianchi R. Applications of Environmental Scanning Electron Microscopy (ESEM) in botanical research. Plant Biosyst. 2008;142:355–359. doi: 10.1080/11263500802150829. DOI
Pereira J.D. Pressure Sensors: Working Principles of Static and Dynamic Calibration. Sensors. 2024;24:629. doi: 10.3390/s24020629. PubMed DOI PMC
Salga J., Hoření B. Tabulky Proudění Plynu. UNOB; Brno, Czech Republic: 1997.
Yuan T.-F., Zhang P.-J.-Y., Liao Z.-M., Wan Z.-H., Liu N.-S., Lu X.-Y. Effects of inflow Mach numbers on shock train dynamics and turbulence features in a backpressured supersonic channel flow. Phys. Fluids. 2024;36:026126. doi: 10.1063/5.0187688. DOI
Zhu Q., Yin Q., Xiong F., Jing H., Pu H., Zhu C. Numerical investigation of fluid flowing through rough fractures subject to shear. Phys. Fluids. 2024;36:036608. doi: 10.1063/5.0190992. DOI
Daněk M. Aerodynamika a Mechanika Letu. VVLŠ SNP; Košice, Slovakia: 1990.
Muscariello L., Rosso F., Marino G., Giordano A., Barbarisi M., Cafiero G., Barbarisi A. A critical overview of ESEM applications in the biological field. J. Cell. Physiol. 2005;205:328–334. doi: 10.1002/jcp.20444. PubMed DOI
Thevenin D., Janiga D. Optimization and Computational Fluid Dynamics. Springer; Berlin/Heidelberg, Germany: 2008.
Kadkhodazadeh S., Ihamouten A., Souriou D., Dérobert X., Guilbert D. Parametric Study to Evaluate the Geometry and Coupling Effect on the Efficiency of a Novel FMM Tool Embedded in Cover Concrete for Corrosion Monitoring. Remote Sens. 2022;14:5593. doi: 10.3390/rs14215593. DOI
Guo Q., Ye P., Zhang Z., Xu Q. Optimization Mechanism of Nozzle Parameters and Characterization of Nanofibers in Centrifugal Spinning. Nanomaterials. 2023;13:3057. doi: 10.3390/nano13233057. PubMed DOI PMC
Škorpík J. Proudění Plynů a Par Tryskami, Transformační Technologie. Jiří Škorpík; Brno, Czech Republic: 2006. Last Updated 10 April 2018.
Baehr H.D., Kabelac S. Thermodynamik. 14th ed. Springer; Berlin/Heidelberg, Germany: 2009.
Beer M., Kudelas D., Rybár R. A Numerical Analysis of the Thermal Energy Storage Based on Porous Gyroid Structure Filled with Sodium Acetate Trihydrate. Energies. 2023;16:309. doi: 10.3390/en16010309. DOI
Kalawa W., Sztekler K., Kozaczuk J., Mika Ł., Radomska E., Nowak W., Gołdasz A. The Effect of Nozzle Configuration on Adsorption-Chiller Performance. Energies. 2024;17:1181. doi: 10.3390/en17051181. DOI
Ansys Fluent Theory Guide. [(accessed on 21 October 2022)]. Available online: www.ansys.com.
Barth T., Jespersen D. The design and application of upwind schemes on unstructured meshes; Proceedings of the 27th Aerospace Sciences Meeting; Reno, NV, USA. 9–12 January 1989.
Yang Y., Li M., Shu S., Xiao A. High order schemes based on upwind schemes with modified coefficients. J. Comput. Appl. Math. 2006;195:242–251. doi: 10.1016/j.cam.2005.04.071. DOI
Gabániová Ľ., Kudelas D., Prčík M. Modelling Ground Collectors and Determination of the Influence of Technical Parameters, Installation and Geometry on the Soil. Energies. 2021;14:7153. doi: 10.3390/en14217153. DOI
Xiao L., Hao X., Lei D., Tiezhi S. Flow structure and parameter evaluation of conical convergent–divergent nozzle supersonic jet flows. Phys. Fluids. 2023;35:066109.
Šabacká P., Maxa J., Bayer R., Vyroubal P., Binar T. Slip Flow Analysis in an Experimental Chamber Simulating Differential Pumping in an Environmental Scanning Electron Microscope. Sensors. 2022;22:9033. doi: 10.3390/s22239033. PubMed DOI PMC
Drexler P., Čáp M., Fiala P., Steinbauer M., Kadlec R., Kaška M., Kočiš L. A Sensor System for Detecting and Localizing Partial Discharges in Power Transformers with Improved Immunity to Interferences. Sensors. 2019;19:923. doi: 10.3390/s19040923. PubMed DOI PMC
Danilatos G.D. Foundations of Environmental Scanning Electron Microscopy. Adv. Electron. Electron Phys. 1988;71:109–250.
Reimer L. Scanning Elektron Microscopy: Physics of Image Formation and Microanalysis. Springer; Berlin/Heidelberg, Germany: 1985.
Frank L., Král J. Metody Analýzy Povrchů: Iontové, Sondové a Speciální Metody. Academia; Praha, Czech Republic: 2002. 489p.