Application of Prandtl's Theory in the Design of an Experimental Chamber for Static Pressure Measurements
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34696062
PubMed Central
PMC8538980
DOI
10.3390/s21206849
PII: s21206849
Knihovny.cz E-zdroje
- Klíčová slova
- BD sensor, ESEM, Prandtl’s theory, differentially pumped chamber, mach number, static pressure, static probe,
- Publikační typ
- časopisecké články MeSH
Pumping in vacuum chambers is part of the field of environmental electron microscopy. These chambers are separated from each other by a small-diameter aperture that creates a critical flow in the supersonic flow regime. The distribution of pressure and shock waves in the path of the primary electron beam passing through the differentially pumped chamber has a large influence on the quality of the resulting microscope image. As part of this research, an experimental chamber was constructed to map supersonic flow at low pressures. The shape of this chamber was designed using mathematical-physical analyses, which served not only as a basis for the design of its geometry, but especially for the correct choice of absolute and differential pressure sensors with respect to the cryogenic temperature generated in the supersonic flow. The mathematical and physical analyses presented here map the nature of the supersonic flow with large gradients of state variables at low pressures at the continuum mechanics boundary near the region of free molecule motion in which the Environmental Electron Microscope and its differentially pumped chamber operate, which has a significant impact on the resulting sharpness of the final image obtained by the microscope. The results of this work map the flow in and behind the Laval nozzle in the experimental chamber and are the initial basis that enabled the optimization of the design of the chamber based on Prandtl's theory for the possibility of fitting it with pressure probes in such a way that they can map the flow in and behind the Laval nozzle.
Zobrazit více v PubMed
Tihlaříková E., Neděla V., Dordevic B. In-situ preparation of plant samples in ESEM for energy dispersive x-ray microanalysis and repetitive observation in SEM and ESEM. Sci. Rep. 2019;9:1–8. doi: 10.1038/s41598-019-38835-w. PubMed DOI PMC
Neděla V., Konvalina I., Oral M., Hudec J. The Simulation of Energy Distribution of Electrons Detected by Segmental Ionization Detector in High Pressure Conditions of ESEM. Microsc. Microanal. 2015;21:264–269. doi: 10.1017/S1431927615013483. PubMed DOI
Jirák J., Neděla V., Černoch P., Čudek P., Runštuk J. Scintillation SE detector for variable pressure scanning electron microscopes. J. Microsc. 2010;239:233–238. doi: 10.1111/j.1365-2818.2010.03377.x. PubMed DOI
Neděla V., Tihlaříková E., Hřib J. The Low-Temperature Method for Study of Coniferous Tissues in the Environmental Scanning Electron Microscope. Microsc. Res. Tech. 2015;78:13–21. doi: 10.1002/jemt.22439. PubMed DOI
Neděla V., Hřib J., Vooková B. Imaging of early conifer embryogenic tissues with the environmental scanning electron microscope. Biol. Plant. 2012;56:595–598. doi: 10.1007/s10535-012-0062-x. DOI
Schenkmayerová A., Bučko M., Gemeiner P., Treľová D., Lacík I., Chorvát Jr. D., Ačai P., Polakovič M., Lipták L., Rebroš M., et al. Physical and Bioengineering Properties of Polyvinyl Alcohol Lens-Shaped Particles Versus Spherical Polyelectrolyte Complex Microcapsules as Immobilisation Matrices for a Whole-Cell Baeyer–Villiger Monooxygenase. Appl. Biochem. Biotechnol. 2014;174:1834–1849. doi: 10.1007/s12010-014-1174-x. PubMed DOI
Neděla V., Tihlaříková E., Maxa J., Imrichová K., Bučko M., Gemeiner P. Simulation-based optimisation of thermodynamic conditions in the ESEM for dynamical in-situ study of spherical polyelectrolyte complex particles in their native state. Ultramicroscopy. 2020;211:112954. doi: 10.1016/j.ultramic.2020.112954. PubMed DOI
Maxa J., Neděla V., Jirák J., Vyroubal P., Hladká K. Analysis of gas flow in a secondary electron scintillation detector for ESEM with a new system of pressure limiting apertures. Adv. Mil. Technol. 2012;7:111–116.
Maxa J., Bílek M., Hlavatá P., Vyroubal P., Lepltová K. Comparisons Using Methods of Continuum Mechanics and Monte Carlo at Differentially Pumped Chamber. Adv. Mil. Technol. 2016;11:143–150. doi: 10.3849/aimt.01120. DOI
Danilatos G.D. Velocity and ejector-jet assisted differential pumping: Novel design stages for environmental SEM. Micron. 2012;43:600–611. doi: 10.1016/j.micron.2011.10.023. DOI
Thevenin D., Janiga D. Optimization and Computational Fluid Dynamics. Springer; Berlin/Heidelberg, Germany: 2008.
Moran M., Shapiro H. Fundamentals of Engineering Thermodynamics. 3rd ed. John Wiley & Sons, Inc.; New York, NY, USA: 1996.
Baehr H. Thermodynamik. 14th ed. Springer; Berlin, Germany: 2009.
Bilek M., Maxa J., Hlavata P., Bayer R. Modeling and simulation of a velocity field within supersonic flows in low-pressure areas. ECS Trans. 2017;81:311–316. doi: 10.1149/08101.0311ecst. DOI
Vyroubal P., Maxa J., Neděla V., Jirák J., Hladká K. Apertures with Laval Nozzle and Circular Orifice in Secondary Electron Detector for Environmental Scanning Electron Microscope. Adv. Mil. Technol. 2013;8:59–69.
Neděla V., Tihlaříková E., Runštuk J., Hudec J. High-efficiency detector of secondary and backscattered electrons for low-dose imaging in the ESEM. Ultramicroscopy. 2018;184:1–11. doi: 10.1016/j.ultramic.2017.08.003. PubMed DOI
Maxa J., Neděla V. The Impact of Critical Flow on the Primary Electron Beam Passage through Differentially Pumped Chamber. Adv. Mil. Technol. 2011;6:39–46.
Dejč M.J. Technická Dynamika Plynů. SNTL; Prague, Czechoslovak Republic: 1967.
Uruba V. Turbulence. [(accessed on 12 October 2021)]. Available online: http://www2.it.cas.cz/~uruba/docs/Aero/Turbulence_45.pdf.
Roy S., Raju R. Modeling gas flow through microchannels and nanopores. J. Appl. Phys. 2003;93:4870–4879. doi: 10.1063/1.1559936. DOI
Van Eck H.J.N., Koppers W.R., van Rooij G., Goedheer W.J., Engeln R., Schram D.C., Cardozo N.J.L., Kleyn A.W. Modeling and experiments on differential pumping in linear plasma generators operating at high gas flows. J. Appl. Phys. 2009;105:063307. doi: 10.1063/1.3086622. DOI
Liu Q., Feng X.-B. Numerical Modelling of Microchannel Gas Flows in the Transition Flow Regime Using the Cascaded Lattice Boltzmann Method. Entropy. 2020;22:41. doi: 10.3390/e22010041. PubMed DOI PMC
Danilatos G. Optimum beam transfer in the environmental scanning electron microscope. J. Microsc. 2009;234:26–37. doi: 10.1111/j.1365-2818.2009.03148.x. PubMed DOI
Danilatos G.D. Figure of merit for environmental SEM and its implications. J. Microsc. 2011;244:159–169. doi: 10.1111/j.1365-2818.2011.03521.x. PubMed DOI
Danilatos G., Rattenberger J., Dracopoulos V. Beam transfer characteristics of a commercial environmental SEM and a low vacuum SEM. J. Microsc. 2011;242:166–180. doi: 10.1111/j.1365-2818.2010.03455.x. PubMed DOI
Škorpík J. Proudění Plynů a par Tryskami. [(accessed on 12 October 2021)]. Available online: https://www.transformacni-technologie.cz/
Salga J., Hoření B. Tabulky Proudění Plynu. UNOB; Brno, Czech Republic: 1997.
Bayer R., Maxa J., Šabacká P. Energy Harvesting Using Thermocouple and Compressed Air. Sensors. 2021;21:6031. doi: 10.3390/s21186031. PubMed DOI PMC
Daněk M. Aerodynamika a Mechanika Letu. VVLŠ SNP; Košice, Slovakia: 1990. p. 83.
Danilatos G.D. Environmental scanning electron microscopy and microanalysis. Mikrochim. Acta. 1994;114:143–155. doi: 10.1007/BF01244538. DOI
Choi E., Kim S., Gong J., Sun H., Kwon M., Seo H., Sul O., Lee S.-B. Tactile Interaction Sensor with Millimeter Sensing Acuity. Sensors. 2021;21:4274. doi: 10.3390/s21134274. PubMed DOI PMC
Kasai M., Sasaki D., Nagata T., Nonomura T., Asai K. Frequency Response of Pressure-Sensitive Paints under Low-Pressure Conditions. Sensors. 2021;21:3187. doi: 10.3390/s21093187. PubMed DOI PMC
Drexler P., Čáp M., Fiala P., Steinbauer M., Kadlec R., Kaška M., Kočiš L. A Sensor System for Detecting and Localizing Partial Discharges in Power Transformers with Improved Immunity to Interferences. Sensors. 2019;19:923. doi: 10.3390/s19040923. PubMed DOI PMC
CFD Analyses of Density Gradients under Conditions of Supersonic Flow at Low Pressures