The Effect of Surface Roughness on Supersonic Nozzle Flow and Electron Dispersion at Low Pressure Conditions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
No. FEKT-S-23-8286
Brno University of Technology
No. IGA24-AF-IP-046
IG Agency of Mendel University in Brno, Faculty of AgriSciences
PubMed
40648459
PubMed Central
PMC12252482
DOI
10.3390/s25134204
PII: s25134204
Knihovny.cz E-zdroje
- Klíčová slova
- Ansys Fluent, CFD, ESEM, aperture, differentially pumped chamber, low pressure, nozzle, roughness, shock wave,
- Publikační typ
- časopisecké články MeSH
This study investigates supersonic flow within a nozzle under low-pressure conditions at the continuum mechanics boundary. This phenomenon is commonly encountered in applications such as the differentially pumped chamber of an Environmental Scanning Electron Microscope (ESEM), which employs an aperture to separate two regions with a great pressure gradient. The nozzle geometry and flow control in this region can significantly influence the scattering and loss of the primary electron beam traversing the differentially pumped chamber and aperture. To this end, an experimental chamber was designed to explore aspects of this low-pressure regime, characterized by a varying ratio of inertial to viscous forces. The initial experimental results obtained using pressure sensors from the fabricated experimental chamber were utilized to refine the Ansys Fluent simulation setup, and in this combined approach, initial analyses of supersonic flow and shock waves in low-pressure environments were conducted. The refined Ansys Fluent system demonstrated a very good correspondence with the experimental findings. Subsequently, an analysis of the influence of surface roughness on the resulting flow behavior in low-pressure conditions was performed on this refined model using the refined CFD model. Based on the obtained results, a comparison of the influence of nozzle roughness on the resulting electron beam scattering was conducted for selected low-pressure variants relevant to the operational conditions of the Environmental Scanning Electron Microscope (ESEM). The influence of roughness at elevated working pressures within the ESEM operating regime on reduced electron beam scattering has been demonstrated. At lower pressure values within the ESEM operating regime, this influence is significantly diminished.
Faculty of AgriSciences Mendel University in Brno Zemědělská 1665 1 613 00 Brno Czech Republic
Institute of Scientific Instruments of the CAS Královopolská 147 612 64 Brno Czech Republic
Zobrazit více v PubMed
Đorđević B., Neděla V., Tihlaříková E., Trojan V., Havel L. Effects of copper and arsenic stress on the development of Norway spruce somatic embryos and their visualization with the environmental scanning electron microscope. New Biotechnol. 2019;48:35–43. doi: 10.1016/j.nbt.2018.05.005. PubMed DOI
Neděla V., Konvalina I., Lencová B., Zlámal J. Comparison of Calculated, Simulated and Measured Signal Amplification in a Variable Pressure Sem. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrometers Detect. Assoc. Equip. 2011;645:79–83. doi: 10.1016/j.nima.2010.12.200. DOI
Neděla V. Controlled Dehydration of a Biological Sample Using an Alternative Form of Environmental Sem. J. Microsc. 2010;237:7–11. doi: 10.1111/j.1365-2818.2009.03216.x. PubMed DOI
Tihlaříková E., Neděla V., Dordevic B. In-Situ Preparation of Plant Samples in Esem for Energy Dispersive X-ray Microanalysis and Repetitive Observation in Sem and Esem. Sci. Rep. 2019;9:2300. doi: 10.1038/s41598-019-38835-w. PubMed DOI PMC
Neděla V., Hřib J., Havel L., Hudec J., Runštuk J. Imaging of Norway Spruce Early Somatic Embryos with the Esem, Cryo-Sem and Laser Scanning Microscope. Micron. 2016;84:67–71. doi: 10.1016/j.micron.2016.02.011. PubMed DOI
Neděla V., Hřib J., Vooková B. Imaging of early conifer embryogenic tissues with the environmental scanning electron microscope. Biol. Plant. 2012;56:595–598. doi: 10.1007/s10535-012-0062-x. DOI
Danilatos G.D., Rattenberger J., Dracopoulos V. Beam transfer characteristics of a commercial environmental SEM and a low vacuum SEM. J. Microsc. 2011;242:166–180. doi: 10.1111/j.1365-2818.2010.03455.x. PubMed DOI
Danilatos G.D. Optimum beam transfer in the environmental scanning electron microscope. J. Microsc. 2009;234:26–37. doi: 10.1111/j.1365-2818.2009.03148.x. PubMed DOI
Danilatos G.D. Figure of merit for environmental SEM and its implications. J. Microsc. 2011;244:159–169. doi: 10.1111/j.1365-2818.2011.03521.x. PubMed DOI
Danilatos G.D. Gas-flow field in the environmental SEM; Proceedings of the Annual Meeting of the Electron Microscopy Society of America; Boston, MA, USA. 16–21 August 1992;
Danilatos G.D. Electron Beam Loss in Commercial Esem; Proceedings of the 16th Australian Conference on Electron Microscopy; Canberra, Australia. 6–11 February 2000; pp. 1–18.
Danilatos G.D. Electron beam current loss at the high-vacuum-high-pressure boundary in the environmental scanning electron microscope. Microsc. Microanal. 2001;7:397–406. doi: 10.1007/S10005-001-0008-0. DOI
Šabacká P., Maxa J., Bayer R., Vyroubal P., Binar T. Slip Flow Analysis in an Experimental Chamber Simulating Differential Pumping in an Environmental Scanning Electron Microscope. Sensors. 2022;22:9033. doi: 10.3390/s22239033. PubMed DOI PMC
Maxa J., Šabacká P., Mazal J., Neděla V., Binar T., Bača P., Talár J., Bayer R., Čudek P. The Impact of Nozzle Opening Thickness on Flow Characteristics and Primary Electron Beam Scattering in an Environmental Scanning Electron Microscope. Sensors. 2024;24:2166. doi: 10.3390/s24072166. PubMed DOI PMC
Urban R., Drexler P., Fiala P., Nešpor D. Numerical Model of a Large Periodic Structure; Proceedings of the Progress in Electromagnetics Research Symposium; Guangzhou, China. 25–28 August 2014; pp. 2350–2354. Code 108821.
Vojtek T., Skoupil T., Fiala P., Bartušek K. Accuracy of Air Ion Field Measurement; Proceedings of the Progress in Electromagnetics Research Symposium; Tokyo, Japan. 2–5 August 2006; pp. 412–415. No. Code 73908.
Dejč M.J. Technická Dynamika Plynů. SNTL; Praha, Czech Republic: 1967.
Škorpík J. Proudění Plynů a Par Tryskami, Transformační Technologie. Pokračující Zdroj; Brno, Czech Republic: 2006.
Moran M., Shapiro H. Fundamentals of Engineering Thermodynamics. 3rd ed. John Wiley & Sons, Inc.; New York, NY, USA: 1996.
Xue Z., Zhou L., Liu D. Accurate Numerical Modeling for 1D Open-Channel Flow with Varying Topography. Water. 2023;15:2893. doi: 10.3390/w15162893. DOI
Salga J., Hoření B. Tabulky Proudění Plynu. UNOB; Brno, Czech Republic: 1997.
Maxa J., Hlavatá P., Vyroubal P. Using the Ideal and Real Gas Model for the Mathematical—Physics Analysis of the Experimental Chambre. ECS Trans. 2018;87:377–387. doi: 10.1149/08701.0377ecst. DOI
Šabacká P., Neděla V., Maxa J., Bayer R. Application of Prandtl’s Theory in the Design of an Experimental Chamber for Static Pressure Measurements. Sensors. 2021;21:6849. doi: 10.3390/s21206849. PubMed DOI PMC
Baehr H.D., Kabelac S. Thermodynamik. 14th ed. Springer; Berlin/Heidelberg, Germany: 2009.
Dutta P.P., Benken A.C., Li T., Ordonez-Varela J.R., Gianchandani Y.B. Passive Wireless Pressure Gradient Measurement System for Fluid Flow Analysis. Sensors. 2023;23:2525. doi: 10.3390/s23052525. PubMed DOI PMC
Chorin A.J. Numerical solution of navier-stokes equations. Math. Comput. 1968;22:745–762. doi: 10.1090/S0025-5718-1968-0242392-2. DOI
Ansys Fluent Theory Guide [Online] [Cit. 2022-10-21] [(accessed on 10 May 2025)]. Available online: www.ansys.com.
Barth T.J., Jespersen D. The design and application of upwind schemes on unstructured meshes; Proceedings of the Technical Report AIAA-89-0366, AIAA 27th Aerospace Sciences Meeting; Reno, NV, USA. 9 January–12 January 1989.
Van Leer B. Toward the Ultimate Concervative Difference Scheme. IV. A Second Order Sequel to Godunov’s Method. J. Comput. Phys. 1979;32:101–136. doi: 10.1016/0021-9991(79)90145-1. DOI
What Is y+ (Yplus) [(accessed on 14 April 2025)]. Available online: https://www.simscale.com/forum/t/what-is-y-yplus/82394.
Dynamická Viskozita Plynů E-Tabulky. [(accessed on 10 May 2025)]. Available online: https://uchi.vscht.cz/e-tabulky/viskozita-plyny.
The Engineering ToolBox Nitrogen-Dynamic and Kinematic Viscosity vs. Temperature and Pressure. [(accessed on 10 May 2025)]. Available online: https://www.engineeringtoolbox.com/nitrogen-N2-dynamic-kinematic-viscosity-temperature-pressure-d_2067.html.
Adams T., Grant C., Watson H. A Simple Algorithm To Relate Measured Surface Roughness to Equivalent Sand-Grain Roughness. Int. J. Mech. Eng. Mechatron. 2012;1:66–71. doi: 10.11159/ijmem.2012.008. DOI
Pfeiffer Vacuum. [(accessed on 3 October 2024)]. Available online: https://www.pfeiffer-vacuum.com/global/en/shop/products/PT_R24_601.
BD Sensors. [(accessed on 3 October 2024)]. Available online: https://www.bdsensors.cz/tlak/diferencni-snimace-tlaku/detail/produkt/dps-300.
Reimer L. Scanning Elektron Microscopy: Physics of Image Formation and Microanalysis. Springer; Berlin/Heidelberg, Germany: 1985.
Frank L., Král J. Metody Analýzy Povrchů: Iontové, Sondové a Speciální Metody. Academia; Praha, Czech Republic: 2002. p. 489s.
Garcia M., Hoffman E.N.A., LaLonde E.J., Combs C.S., Pohlman M., Smith C., Gragston M.T., Schmisseur J.D. Effects of Surface Roughness on Shock-Wave/Turbulent Boundary-Layer Interaction at Mach 4 over a Hollow Cylinder Flare Model. Fluids. 2022;7:286. doi: 10.3390/fluids7090286. DOI
Blanco-Casares A., Jacobs G.B. Wall Roughness Effects on the Supersonic Flow over a Circular Cylinder. Shock Waves. 2022;30:643–663. doi: 10.1007/s00193-022-01098-y. DOI
Dzarma G.W., Adeyemi A.B., Taj-Liad A.A. Effect of Inner Surface Roughness on Pressure Drop in a Small Diameter Pipe. Int. J. Nov. Res. Eng. Sci. 2020;7:1–8.
Matsuda H., Otomo F., Kawagishi H., Inomata A., Niizeki Y., Sasaki T. Influence Of Surface Roughness On Turbine Nozzle Profile Loss And Secondary Loss; Proceedings of the ASME Turbo Expo 2006—Power for Land, Sea, and Air; Barcelona, Spain. 8–11 May 2006; pp. 1–9.