In-situ preparation of plant samples in ESEM for energy dispersive x-ray microanalysis and repetitive observation in SEM and ESEM
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30783188
PubMed Central
PMC6381206
DOI
10.1038/s41598-019-38835-w
PII: 10.1038/s41598-019-38835-w
Knihovny.cz E-zdroje
- MeSH
- mikroanalýza elektronovou sondou metody MeSH
- mikroskopie elektronová rastrovací metody MeSH
- rostliny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The Extended Low Temperature Method (ELTM) for the in-situ preparation of plant samples in an environmental scanning electron microscope enables carrying out repetitive topographical and material analysis at a higher resolution in the vacuum conditions of a scanning electron microscope or in the low gas pressure conditions of an environmental scanning electron microscope. The method does not require any chemical intervention and is thus suitable for imaging delicate structures rarely observable with common treatment methods. The method enables both sample stabilization as close to their native state as possible, as well as the transfer of the same sample from a low vacuum to an atmospheric condition for sample storage or later study. It is impossible for wet samples in the environmental scanning electron microscope. Our studies illustrate the high applicability of the ELTM for different types of plant tissue, from imaging of plant waxes at higher resolution, the morphological study of highly susceptible early somatic embryos to the elemental microanalysis of root cells. The method established here provides a very fast, universal and inexpensive solution for plant sample treatment usable in a commercial environmental scanning electron microscope equipped with a cooling Peltier stage.
Department of Plant Biology Mendel University in Brno Brno 613 00 Czech Republic
Institute of Scientific Instruments of the Czech Academy of Sciences Brno 612 00 Czech Republic
Zobrazit více v PubMed
Pathan AK, Bond J, Gaskin RE. Sample preparation for SEM of plant surfaces. Mater. Today. 2010;12:32–43. doi: 10.1016/S1369-7021(10)70143-7. DOI
Echlin, P. Sample Stabilization for Imaging in the SEM. In Handbook of Sample Preparation for Scanning Electron Microscopy and X-Ray Microanalysis 137–183, 10.1007/978-0-387-85731-2_8 (Springer US, 2009).
Golding CG, Lamboo LL, Beniac DR, Booth TF. The scanning electron microscope in microbiology and diagnosis of infectious disease. Sci. Rep. 2016;6:26516. doi: 10.1038/srep26516. PubMed DOI PMC
Cocozza C, et al. Distribution and concentration of cadmium in root tissue of Populus alba determined by scanning electron microscopy and energy-dispersive x-ray microanalysis. iForest-Biogeoscience For. 2008;1:96–103. doi: 10.3832/ifor0458-0010096. DOI
Tihlaříková E, Neděla V, Shiojiri M. In Situ Study of Live Specimens in an Environmental Scanning Electron Microscope. Microsc. Microanal. 2013;19:914–918. doi: 10.1017/S1431927613000603. PubMed DOI
Neděla V. Methods for additive hydration allowing observation of fully hydrated state of wet samples in environmental SEM. Microsc. Res. Tech. 2007;70:95–100. doi: 10.1002/jemt.20390. PubMed DOI
Cox, G., Vesk, P., Dibbayawan, T., Baskin, T. I. & Vesk, M. High-Resolution and Low-Voltage SEM of Plant Cells. In Biological Low-Voltage Scanning Electron Microscopy 229–244, 10.1007/978-0-387-72972-5_9 (Springer New York, 2008).
Echlin P. Low temperature scanning electron microscopy: a review. J. Microsc. 1978;112:47–61. doi: 10.1111/j.1365-2818.1978.tb01153.x. PubMed DOI
Jeffree, C. E. & Read, N. D. Ambient- and Low-Temperature Scanning Electron Microscopy. Electron Microsc. PlantCells 313–413, 10.1016/B978-0-12-318880-9.50013-2 (1991). PubMed
Neděla V, Hřib J, Havel L, Hudec J, Runštuk J. Imaging of Norway spruce early somatic embryos with the ESEM, Cryo-SEM and laser scanning microscope. Micron. 2016;84:67–71. doi: 10.1016/j.micron.2016.02.011. PubMed DOI
Neděla V. Controlled dehydration of a biological sample using an alternative form of environmental SEM. J. Microsc. 2010;237:7–11. doi: 10.1111/j.1365-2818.2009.03216.x. PubMed DOI
Stokes DJ, Rea SM, Best SM, Bonfield W. Electron microscopy of mammalian cells in the absence of fixing, freezing, dehydration, or specimen coating. Scanning. 2003;25:181–184. doi: 10.1002/sca.4950250404. PubMed DOI
Neděla V, Tihlaříková E, Hřib J. The low-temperature method for study of coniferous tissues in the environmental scanning electron microscope. Microsc. Res. Tech. 2015;78:13–21. doi: 10.1002/jemt.22439. PubMed DOI
Đorđević B, et al. Effects of copper and arsenic stress on the development of Norway spruce somatic embryos and their visualization with the environmental scanning electron microscope. N. Biotechnol. 2019;48:35–43. doi: 10.1016/j.nbt.2018.05.005. PubMed DOI
Tihlaříková E, Neděla V, Fránková M. Micro-morphological Characterization of In-Vivo Diatoms Using ESEM. Microsc. Microanal. 2017;23:1346–1347. doi: 10.1017/S1431927617007395. DOI
Vlašínová H, Neděla V, Đorđević B, Havel L. Bottlenecks in bog pine multiplication by somatic embryogenesis and their visualization with the environmental scanning electron microscope. Protoplasma. 2017;254:1487–1497. doi: 10.1007/s00709-016-1036-1. PubMed DOI
Michaloudi E, et al. Reverse taxonomy applied to the brachionus calyciflorus cryptic species complex: Morphometric analysis confirms species delimitations revealed by molecular phylogenetic analysis and allows the (re) description of four species. PLoS One. 2018;13:e0203168. doi: 10.1371/journal.pone.0203168. PubMed DOI PMC
Olien, C. R. & Smith, M. N. Protective systems that have evolved in plants. In Advances in Plant Cold Hardiness (eds Olien, C. R. & Smith, M. N.) 61–88 (CRC Press, 1981).
Griffith, M. & Antikienen, M. Extracellular Ice Formation in Freezing-Tolerant Plants. In Advances in low-temperature biology. Volume 3 (ed. Steponkus, P. L.) 107–139 (JAI Press, 1996).
Zhu JJ, Beck E. Water Relations of Pachysandra Leaves during Freezing and Thawing: Evidence for a Negative Pressure Potential Alleviating Freeze-Dehydration Stress. Plant Physiol. 1991;97:1146–1153. doi: 10.1104/pp.97.3.1146. PubMed DOI PMC
Ensikat, H. J., Ditsche-Kuru, P. & Barthlott, W. Scanning electron microscopy of plant surfaces: simple but sophisticated methods for preparation and examination. In Microscopy: science, technology, applications and educations (eds Mendez-Vilas, A. & Diaz, J.) 248–255 (Formatex Research Center, 2010).
Ensikat HJ, Barthlott W. Liquid substitution: A versatile procedure for SEM specimen preparation of biological materials without drying or coating. J. Microsc. 1993;172:195–203. doi: 10.1111/j.1365-2818.1993.tb03413.x. PubMed DOI
Muscariello L, et al. A critical overview of ESEM applications in the biological field. J. Cell. Physiol. 2005;205:328–334. doi: 10.1002/jcp.20444. PubMed DOI
Khoshmanesh K, et al. Interfacing Cell-Based Assays in Environmental Scanning Electron Microscopy Using Dielectrophoresis. Anal. Chem. 2011;83:3217–3221. doi: 10.1021/ac2002142. PubMed DOI
Tang S-Y, et al. High Resolution Scanning Electron Microscopy of Cells Using Dielectrophoresis. PLoS One. 2014;9:e104109. doi: 10.1371/journal.pone.0104109. PubMed DOI PMC
Popielarska-Konieczna M, Bohdanowicz J, Starnawska E. Extracellular matrix of plant callus tissue visualized by ESEM and SEM. Protoplasma. 2010;247:121–125. doi: 10.1007/s00709-010-0149-1. PubMed DOI
Neděla V, Tihlaříková E, Runštuk J, Hudec J. High-efficiency detector of secondary and backscattered electrons for low-dose imaging in the ESEM. Ultramicroscopy. 2018;184:1–11. doi: 10.1016/j.ultramic.2017.08.003. PubMed DOI
Hřib J, Vooková B, Neděla V. Imaging of native early embryogenic tissue of Scots pine (Pinus sylvestris L.) by ESEM. Open Life Sci. 2015;10:285–290.
Neděla V, Hřib J, Vooková B. Imaging of early conifer embryogenic tissues with the environmental scanning electron microscope. Biol. Plant. 2012;56:595–598. doi: 10.1007/s10535-012-0062-x. DOI
Schenkmayerová A, et al. Physical and Bioengineering Properties of Polyvinyl Alcohol Lens-Shaped Particles Versus Spherical Polyelectrolyte Complex Microcapsules as Immobilisation Matrices for a Whole-Cell Baeyer–Villiger Monooxygenase. Appl. Biochem. Biotechnol. 2014;174:1834–1849. doi: 10.1007/s12010-014-1174-x. PubMed DOI
Kulich I, et al. Exocyst subunit EXO70H4 has a specific role in callose synthase secretion and silica accumulation. Plant Physiol. 2018;176:2040–2051. doi: 10.1104/pp.17.01693. PubMed DOI PMC
Vaculík M, et al. Root anatomy and element distribution vary between two Salix caprea isolates with different Cd accumulation capacities. Environ. Pollut. 2012;163:117–126. doi: 10.1016/j.envpol.2011.12.031. PubMed DOI PMC