Application of a Total Pressure Sensor in Supersonic Flow for Shock Wave Analysis Under Low-Pressure Conditions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
41157344
PubMed Central
PMC12567566
DOI
10.3390/s25206291
PII: s25206291
Knihovny.cz E-zdroje
- Klíčová slova
- Ansys Fluent, CFD, ESEM, aperture, differentially pumped chamber, low pressure, nozzle, pitot sensors, shock wave,
- Publikační typ
- časopisecké články MeSH
This study examines the design and implementation of a sensor developed to measure total pressure in supersonic flow conditions using nitrogen as the working fluid. Using a combination of absolute and differential pressure sensors, the total pressure distribution downstream of a nozzle-where normal shock waves are generated-was characterized across a range of low-pressure regimes. The experimental results were employed to validate and calibrate computational fluid dynamics (CFD) models, particularly within pressure ranges approaching the limits of continuum mechanics. The validated analyses enabled a more detailed examination of shock-wave behavior under near-continuum conditions, with direct relevance to the operational environment of differentially pumped chambers in Environmental Scanning Electron Microscopy (ESEM). Furthermore, an entropy increase across the normal shock wave at low pressures was quantified, attributed to the extended molecular mean free path and local deviations from thermodynamic equilibrium.
Faculty of AgriSciences Mendel University in Brno Zemědělská 1665 1 613 00 Brno Czech Republic
Institute of Scientific Instruments of the CAS Královopolská 147 612 64 Brno Czech Republic
Zobrazit více v PubMed
Maxa J., Neděla V., Šabacká P., Binar T. Impact of Supersonic Flow in Scintillator Detector Apertures on the Resulting Pumping Effect of the Vacuum Chambers. Sensors. 2023;23:4861. doi: 10.3390/s23104861. PubMed DOI PMC
Đorđević B., Neděla V., Tihlaříková E., Trojan V., Havel L. Effects of copper and arsenic stress on the development of Norway spruce somatic embryos and their visualization with the environmental scanning electron microscope. New Biotechnol. 2019;48:35–43. doi: 10.1016/j.nbt.2018.05.005. PubMed DOI
Neděla V., Konvalina I., Lencová B., Zlámal J. Comparison of Calculated, Simulated and Measured Signal Amplification in a Variable Pressure Sem. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2011;645:79–83. doi: 10.1016/j.nima.2010.12.200. DOI
Neděla V. Controlled Dehydration of a Biological Sample Using an Alternative form of Environmental Sem. J. Microsc. 2010;237:7–11. doi: 10.1111/j.1365-2818.2009.03216.x. PubMed DOI
Tihlaříková E., Neděla V., Dordevic B. In-Situ Preparation of Plant Samples in Esem for Energy Dispersive X-Ray Microanalysis and Repetitive Observation in Sem and Esem. Sci. Rep. 2019;9:2300. doi: 10.1038/s41598-019-38835-w. PubMed DOI PMC
Neděla V., Hřib J., Havel L., Hudec J., Runštuk J. Imaging of Norway Spruce Early Somatic Embryos with the Esem, Cryo-Sem and Laser Scanning Microscope. Micron. 2016;84:67–71. doi: 10.1016/j.micron.2016.02.011. PubMed DOI
Neděla V., Hřib J., Vooková B. Imaging of early conifer embryogenic tissues with the environmental scanning electron microscope. Biol. Plant. 2012;56:595–598. doi: 10.1007/s10535-012-0062-x. DOI
Šabacká P., Maxa J., Bayer R., Binar T., Bača P., Švecová J., Talár J., Vlkovský M. An Experimental and Numerical Analysis of the Influence of Surface Roughness on Supersonic Flow in a Nozzle Under Atmospheric and Low-Pressure Conditions. Technologies. 2025;13:160. doi: 10.3390/technologies13040160. DOI
Maxa J., Šabacká P., Mazal J., Neděla V., Binar T., Bača P., Talár J., Bayer R., Čudek P. The Impact of Nozzle Opening Thickness on Flow Characteristics and Primary Electron Beam Scattering in an Environmental Scanning Electron Microscope. Sensors. 2024;24:2166. doi: 10.3390/s24072166. PubMed DOI PMC
Daněk M. Aerodynamika a Mechanika Letu. VVLŠ SNP; Košice, Slovakia: 1990.
Brer D.W., Pankhurst R.C. Pressure-Probe Methods for Determining Wind Speed and Flow Direction. Her Majesty´s Stationery Office; London, UK: 1971.
Chue S.H. Pressure Probes for Fluid Measurement. Prog. Aerosp. Sci. 2004;16:147–233. doi: 10.1016/0376-0421(75)90014-7. DOI
Dejč M.J. Technická Dynamika Plynů. SNTL; Praha, Czech Republic: 1967.
Škorpík J. Proudění Plynů a Par Tryskami, Transformační Technologie. Pokračující Zdroj; Brno, Czech Republic: 2006.
Moran M., Shapiro H. Fundamentals of Engineering Thermodynamics. 3rd ed. John Wiley & Sons, Inc.; New York, NY, USA: 1996.
Ferziger J.H., Perić M. Computational Methods for Fluid Dynamics. 3rd ed. Springer GmbH & Co.; New York, NY, USA: 2002. pp. 157–206.
Urban R., Drexler P., Fiala P., Nespor D. Numerical Model of a Large Periodic Structure. Prog. Electromagn. Res. Symp. 2014:2350–2354.
Baehr H.D., Kabelac S. Thermodynamik. 14th ed. Springer; Berlin/Heidelberg, Germany: 2009.
Dutta P.P., Benken A.C., Li T., Ordonez-Varela J.R., Gianchandani Y.B. Passive Wireless Pressure Gradient Measurement System for Fluid Flow Analysis. Sensors. 2023;23:2525. doi: 10.3390/s23052525. PubMed DOI PMC
Chorin A.J. Numerical solution of navier-stokes equations. Math. Comput. 1968;22:745–762. doi: 10.1090/S0025-5718-1968-0242392-2. DOI
Versteeg H.K., Malalasekera W. An Introductiom Tp Computational Fluid Dynamics: The Finite Volume Method. John Wiley & Sons; New York, NY, USA: 1955. pp. 10–39.
Barth T.J., Jespersen D. The design and application of upwind schemes on unstructured meshes; Proceedings of the Technical Report AIAA-89-0366, AIAA 27th Aerospace Sciences Meeting; Reno, NV, USA. 9–12 January 1989.
Van Leer B. Toward the Ultimate Concervative Difference Scheme. IV. A Second Order Sequel to Godunov’s Method. J. Comput. Phys. 1979;32:101–136. doi: 10.1016/0021-9991(79)90145-1. DOI
West L.G.M., Simões A.J.R., Teixeira L.d.R., dos Anjos I.S.M., Devesa A.S.B.d.F., Oliveira L.R., Gomes J.G.d.C., Gomes L.R.T.C., Pereira L.G., Soares Junior L.C.S., et al. Experimental and Numerical Analysis of Nozzle-Induced Cavitating Jets: Optical Instrumentation, Pressure Fluctuations and Anisotropic Turbulence Modeling. Fluids. 2025;10:223. doi: 10.3390/fluids10090223. DOI
Mendoza-Anchondo R.J., Alvarez-Herrera C., Murillo-Ramírez J.G. Visualization and Parameters Determination of Supersonic Flows in Convergent-Divergent Micro-Nozzles Using Schlieren Z-Type Technique and Fluid Mechanics. Fluids. 2025;10:40. doi: 10.3390/fluids10020040. DOI
Ansys Fluent Theory Guide. [(accessed on 21 October 2022)]. Available online: https://www.ansys.com.
Pfeiffer Vacuum. [(accessed on 3 October 2024)]. Available online: https://www.pfeiffer-vacuum.com/global/en/shop/products/PT_R24_601.
BD Sensors. [(accessed on 3 October 2024)]. Available online: https://www.bdsensors.cz/tlak/diferencni-snimace-tlaku/detail/produkt/dps-300.
Pieniążek J., Cieciński P., Ficek D., Szumski M. Dynamic Response of the Pitot Tube with Pressure Sensor. Sensors. 2023;23:2843. doi: 10.3390/s23052843. PubMed DOI PMC
Lyu Y.W., Cheng K.X., Huang H.X., Zhang J.Z. Numerical Investigation Of Pressure Measurement By Pitot Tubes In Microscale Taylor–Couette Flow with Hyper-Rotate Speed and Its Correction. Phys. Fluids. 2024;36:12. doi: 10.1063/5.0232045. DOI
Šabacká P., Maxa J., Bayer R., Vyroubal P., Binar T. Slip Flow Analysis in an Experimental Chamber Simulating Differential Pumping in an Environmental Scanning Electron Microscope. Sensors. 2022;22:9033. doi: 10.3390/s22239033. PubMed DOI PMC
Anderson J.D.J. Modern Compressible Flow: With Historical Perspective. 2nd ed. Mc-Graw Hill; New York, NY, USA: 2003. p. 86.