Slip Flow Analysis in an Experimental Chamber Simulating Differential Pumping in an Environmental Scanning Electron Microscope

. 2022 Nov 22 ; 22 (23) : . [epub] 20221122

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36501735

This paper describes the combination of experimental measurements with mathematical-physical analysis during the investigation of flow in an aperture at low pressures in a prepared experimental chamber. In the first step, experimental measurements of the pressure in the specimen chamber and at its outlet were taken during the pumping of the chamber. This process converted the atmospheric pressure into the operating pressure typical for the current AQUASEM II environmental electron microscope at the ISI of the CAS in Brno. Based on these results, a mathematical-physical model was tuned in the Ansys Fluent system and subsequently used for mathematical-physical analysis in a slip flow regime on a nozzle wall at low pressure. These analyses will be used to fine-tune the experimental chamber. Once the chamber is operational, it will be possible to compare the results obtained from the experimental measurements of the nozzle wall pressure, static pressure, total pressure and temperature from the nozzle axis region in supersonic flow with the results obtained from the mathematical-physical analyses. Based on the above comparative analyses, we will be able to determine the realistic slip flow at the nozzle wall under different conditions at the continuum mechanics boundary.

Zobrazit více v PubMed

Tihlaříková E., Neděla V., Dordevic B. In-situ preparation of plant samples in ESEM for energy dispersive x-ray microanalysis and repetitive observation in SEM and ESEM. Sci. Rep. 2019;9:2300. doi: 10.1038/s41598-019-38835-w. PubMed DOI PMC

Neděla V., Hřib J., Havel L., Hudec J., Runštuk J. Imaging of Norway spruce early somatic embryos with the ESEM, Cryo-SEM and laser scanning microscope. Micron. 2016;84:67–71. doi: 10.1016/j.micron.2016.02.011. PubMed DOI

Vyroubal P., Maxa J., Neděla V., Jirák J., Hladká K. Apertures with Laval Nozzle and Circular Orifice in Secondary Electron Detector for Environmental Scanning Electron Microscope. Adv. Mil. Technol. 2013;8:59–69.

Neděla V., Konvalina I., Lencová B., Zlámal J. Comparison of calculated, simulated and measured signal amplification in variable pressure SEM. Nucl. Instrum. Methods Phys. Res. Sect. A. 2011;645:79–83. doi: 10.1016/j.nima.2010.12.200. DOI

Neděla V., Konvalina I., Oral M., Hudec J. The Simulation of Energy Distribution of Electrons Detected by Segmental Ionization Detector in High Pressure Conditions of ESEM. Microsc. Microanal. 2015;21:264–269. doi: 10.1017/S1431927615013483. PubMed DOI

Jirák J., Neděla V., Černoch P., Čudek P., Runštuk J. Scintillation SE detector for variable pressure scanning electron microscopes. J. Microsc. 2010;239:233–238. doi: 10.1111/j.1365-2818.2010.03377.x. PubMed DOI

Neděla V., Tihlaříková E., Runštuk J., Hudec J. High-efficiency detector of secondary and backscattered electrons for low-dose imaging in the ESEM. Ultramicroscopy. 2018;184:1–11. doi: 10.1016/j.ultramic.2017.08.003. PubMed DOI

Neděla V., Tihlaříková E., Maxa J., Imrichová K., Bučko M., Gemeiner P. Simulation-based optimisation of thermodynamic conditions in the ESEM for dynamical in-situ study of spherical polyelectrolyte complex particles in their native state. Ultramicroscopy. 2020;211:112954. doi: 10.1016/j.ultramic.2020.112954. PubMed DOI

Stelate A., Tihlaříková E., Schwarzerová K., Neděla V., Petrášek J. Correlative Light-Environmental Scanning Electron Microscopy of Plasma Membrane Efflux Carriers of Plant Hormone Auxin. Biomolecules. 2021;11:1407. doi: 10.3390/biom11101407. PubMed DOI PMC

Bilek M., Maxa J., Hlavata P., Bayer R. Modeling and simulation of a velocity field within supersonic flows in low-pressure areas. ECS Trans. 2017;81:311–316. doi: 10.1149/08101.0311ecst. DOI

Šabacká P., Neděla V., Maxa J., Bayer R. Application of Prandtl’s Theory in the Design of An Experimental Chamber for Static Pressure Measurements. Sensors. 2021;21:6849. doi: 10.3390/s21206849. PubMed DOI PMC

Barth T.J., Jespersen D. The design and application of upwind schemes on unstructured meshes; Proceedings of the AIAA 27th Aerospace Sciences Meeting; Reno, NV, USA. 9–12 January 1989; Technical Report AIAA-89-0366.

Ansys Fluent Theory Guide. [(accessed on 21 October 2022)]. Available online: www.ansys.com.

Bayer R., Maxa J., Šabacká P. Energy Harvesting Using Thermocouple and Compressed Air. Sensors. 2021;21:6031. doi: 10.3390/s21186031. PubMed DOI PMC

Uruba V. Turbulence. [(accessed on 12 October 2021)]. Available online: http://www2.it.cas.cz/~{}uruba/docs/Aero/Turbulence_45.pdf.

Roy S., Raju R. Modeling gas flow through microchannels and nanopores. J. Appl. Phys. 2003;93:4870–4879. doi: 10.1063/1.1559936. DOI

Van Eck H.J.N., Koppers W.R., van Rooij G., Goedheer W.J., Engeln R., Schram D.C., Cardozo N.J.L., Kleyn A.W. Modeling and experiments on differential pumping in linear plasma generators operating at high gas flows. J. Appl. Phys. 2009;105:063307. doi: 10.1063/1.3086622. DOI

Gupta G., Rana P. Comparative Study on Rosseland’s Heat Flux on Three-Dimensional MHD Stagnation-Point Multiple Slip Flow of Ternary Hybrid Nanofluid over a Stretchable Rotating Disk. Mathematics. 2022;10:3342. doi: 10.3390/math10183342. DOI

Tomy A.M., Dadzie S.K. Diffusion-Slip Boundary Conditions for Isothermal Flows in Micro- and Nano-Channels. Micromachines. 2022;13:1425. doi: 10.3390/mi13091425. PubMed DOI PMC

Akram S., Athar M., Saeed K., Razia A., Alghamdi M., Muhammad T. Impact of Partial Slip on Double Diffusion Convection of Sisko Nanofluids in Asymmetric Channel with Peristaltic Propulsion and Inclined Magnetic Field. Nanomaterials. 2022;12:2736. doi: 10.3390/nano12162736. PubMed DOI PMC

Danilatos G.D. Velocity and ejector-jet assisted differential pumping: Novel design stages for environmental SEM. Micron. 2012;43:600–611. doi: 10.1016/j.micron.2011.10.023. DOI

Guo W., Hou G. Three-Dimensional Simulations of Anisotropic Slip Microflows Using the Discrete Unified Gas Kinetic Scheme. Entropy. 2022;24:907. doi: 10.3390/e24070907. PubMed DOI PMC

Chang C.-C. Asymmetric Electrokinetic Energy Conversion in Slip Conical Nanopores. Nanomaterials. 2022;12:1100. doi: 10.3390/nano12071100. PubMed DOI PMC

Salga J., Hoření B. Tabulky Proudění Plynu. UNOB; Brno, Czech Republic: 1997.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

CFD Analyses of Density Gradients under Conditions of Supersonic Flow at Low Pressures

. 2024 Sep 14 ; 24 (18) : . [epub] 20240914

Mathematical-Physics Analyses of the Nozzle Shaping at the Aperture Gas Outlet into Free Space under ESEM Pressure Conditions

. 2024 May 26 ; 24 (11) : . [epub] 20240526

Mathematical Physics Analysis of Nozzle Shaping at the Gas Outlet from the Aperture to the Differentially Pumped Chamber in Environmental Scanning Electron Microscopy (ESEM)

. 2024 May 20 ; 24 (10) : . [epub] 20240520

The Impact of Nozzle Opening Thickness on Flow Characteristics and Primary Electron Beam Scattering in an Environmental Scanning Electron Microscope

. 2024 Mar 28 ; 24 (7) : . [epub] 20240328

Comparative Analysis of Supersonic Flow in Atmospheric and Low Pressure in the Region of Shock Waves Creation for Electron Microscopy

. 2023 Dec 11 ; 23 (24) : . [epub] 20231211

Impact of Supersonic Flow in Scintillator Detector Apertures on the Resulting Pumping Effect of the Vacuum Chambers

. 2023 May 18 ; 23 (10) : . [epub] 20230518

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...