CFD Analyses of Density Gradients under Conditions of Supersonic Flow at Low Pressures
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
39338713
PubMed Central
PMC11435845
DOI
10.3390/s24185968
PII: s24185968
Knihovny.cz E-zdroje
- Klíčová slova
- Ansys Fluent, CFD, ESEM, Schlieren method, critical flow, nozzle, shock wave,
- Publikační typ
- časopisecké články MeSH
This paper deals with CFD analyses of the difference in the nature of the shock waves in supersonic flow under atmospheric pressure and pressure conditions at the boundary of continuum mechanics for electron microscopy. The first part describes the verification of the CFD analyses in combination with the experimental chamber results and the initial analyses using optical methods at low pressures on the boundary of continuum mechanics that were performed. The second part describes the analyses on an underexpanded nozzle performed to analyze the characteristics of normal shock waves in a pressure range from atmospheric pressure to pressures at the boundary of continuum mechanics. The results obtained by CFD modeling are prepared as a basis for the design of the planned experimental sensing of density gradients using optical methods, and for validation, the expected pressure and temperature courses from selected locations suitable for the placement of temperature and pressure sensors are prepared from the CFD analyses.
Zobrazit více v PubMed
Neděla V., Tihlaříková E., Maxa J., Imrichová K., Bučko M., Gemeiner P. Simulation-based optimisation of thermodynamic conditions in the ESEM for dynamical in-situ study of spherical polyelectrolyte complex particles in their native state. Ultramicroscopy. 2020;211:112954. doi: 10.1016/j.ultramic.2020.112954. PubMed DOI
Vetráková Ľ., Neděla V., Runštuk J., Heger D. The morphology of ice and liquid brine in an environmental scanning electron microscope: A study of the freezing methods. Cryosphere. 2019;13:2385–2405. doi: 10.5194/tc-13-2385-2019. DOI
Đorđević B., Neděla V., Tihlaříková E., Trojan V., Havel L. Effects of copper and arsenic stress on the development of Norway spruce somatic embryos and their visualization with the environmental scanning electron microscope. New Biotechnol. 2019;48:35–43. doi: 10.1016/j.nbt.2018.05.005. PubMed DOI
Imrichová K., Veselý L., Gasser T.M., Loerting T., Neděla V., Heger D. Vitrification and increase of basicity in between ice Ih crystals in rapidly frozen dilute NaCl aqueous solutions. J. Chem. Phys. 2019;151:014503. doi: 10.1063/1.5100852. PubMed DOI
Neděla V., Hřib J., Vooková B. Imaging of early conifer embryogenic tissues with the environmental scanning electron microscope. Biol. Plant. 2012;56:595–598. doi: 10.1007/s10535-012-0062-x. DOI
Maxa J., Neděla V. The impact of critical flow on the primary electron beam passage through differentially pumped chamber. Adv. Mil. Technol. 2011;6:39–46.
Ritscher A., Schmetterer C., Ipser H. Pressure dependence of the tin–phosphorus phase diagram. Monatsh. Chem. 2012;143:1593–1602. doi: 10.1007/s00706-012-0861-y. DOI
Stelate A., Tihlaříková E., Schwarzerová K., Neděla V., Petrášek J. Correlative Light-Environmental Scanning Electron Microscopy of Plasma Membrane Efflux Carriers of Plant Hormone Auxin. Biomolecules. 2021;11:1407. PubMed PMC
Schenkmayerová A., Bučko M., Gemeiner P., Treľová D., Lacík I., Chorvát D., Ačai P., Polakovič M., Lipták L., Rebroš M., et al. Physical and Bioengineering Properties of Polyvinyl Alcohol Lens-Shaped Particles Versus Spherical Polyelectrolyte Complex Microcapsules as Immobilisation Matrices for a Whole-Cell Baeyer–Villiger Monooxygenase. Appl. Biochem. Biotechnol. 2014;174:1834–1849. doi: 10.1007/s12010-014-1174-x. PubMed DOI
Neděla V., Konvalina I., Oral M., Hudec J. The Simulation of Energy Distribution of Electrons Detected by Segmental Ionization Detector in High Pressure Conditions of ESEM. Microsc. Microanal. 2015;21:264–269. doi: 10.1017/S1431927615013483. PubMed DOI
van Eck H.J.N., Koppers W.R., van Rooij G.J., Goedheer W.J., Engeln R., Schram D.C., Cardozo N.J.L., Kleyn A.W. Modeling and experiments on differential pumping in linear plasma generators operating at high gas flows. J. Appl. Phys. 2009;105:063307. doi: 10.1063/1.3086622. DOI
Taylor H.G., Waldram J.M. Improvements in the schlieren method. J. Sci. Instrum. 1933;10:378–389. doi: 10.1088/0950-7671/10/12/304. DOI
Richard H., Raffel M. Principle and applications of the background oriented schlieren (BOS)method. Meas. Sci. Technol. 2001;12:1576. doi: 10.1088/0957-0233/12/9/325. DOI
Schradin H. Schlieren methods and their applications. Ergeb. Exakten Naturewiss. 1942;20:303–439.
Danilatos G.D. Velocity and ejector-jet assisted differential pumping: Novel design stages for environmental SEM. Micron. 2012;43:600–611. doi: 10.1016/j.micron.2011.10.023. DOI
Danilatos G.D. Figure of merit for environmental SEM and its implications. J. Microsc. 2011;244:159–169. doi: 10.1111/j.1365-2818.2011.03521.x. PubMed DOI
Danilatos G.D. Optimum beam transfer in the environmental scanning electron microscope. J. Microsc. 2009;234:26–37. doi: 10.1111/j.1365-2818.2009.03148.x. PubMed DOI
Danilatos G.D., Rattenberger J., Dracopoulos V. Beam transfer characteristics of a commercial environmental SEM and a low vacuum SEM. J. Microsc. 2011;242:166–180. doi: 10.1111/j.1365-2818.2010.03455.x. PubMed DOI
Xue Z., Zhou L., Liu D. Accurate Numerical Modeling for 1D Open-Channel Flow with Varying Topography. Water. 2023;15:2893. doi: 10.3390/w15162893. DOI
Škorpík J. Proudění plynů a par tryskami. Transform. Technol. 2006;2:1–20.
Moran M.J., Shapiro H.N. Fundamentals of Engineering Thermodynamics. 3rd ed. John and Wiley and Sons; Hoboken, NJ, USA: 1998.
Nasuti F., Onofri M. Shock structure in separated nozzle flows. Shock. Waves. 2008;19:229–237. doi: 10.1007/s00193-008-0173-7. DOI
Gong C., Ou M., Jia W. The effect of nozzle configuration on the evolution of jet surface structure. Results Phys. 2019;15:102572. doi: 10.1016/j.rinp.2019.102572. DOI
Yuan T.-F., Zhang P.-J.-Y., Liao Z.-M., Wan Z.-H., Liu N.-S., Lu X.-Y. Effects of inflow Mach numbers on shock train dynamics and turbulence features in a backpressured supersonic channel flow. Phys. Fluids. 2024;36:026126. doi: 10.1063/5.0187688. DOI
Liu Q., Feng X.-B. Numerical Modelling of Microchannel Gas Flows in the Transition Flow Regime Using the Cascaded Lattice Boltzmann Method. Entropy. 2020;22:41. doi: 10.3390/e22010041. PubMed DOI PMC
Salga J., Hoření B. Tabulky Proudění Plynu. UNOB; Brno, Czech Republic: 1997.
Daněk M. Aerodynamika a Mechanika Letu. VVLŠ SNP; Košice, Slovak Republic: 1990.
Baehr H.D., Kabelac S. Thermodynamik. 14th ed. Springer; Berlin/Heidelberg, Germany: 2009.
Dutta P.P., Benken A.C., Li T., Ordonez-Varela J.R., Gianchandani Y.B. Passive Wireless Pressure Gradient Measurement System for Fluid Flow Analysis. Sensors. 2023;23:2525. doi: 10.3390/s23052525. PubMed DOI PMC
Ansys Fluent Theory Guide. [(accessed on 21 October 2022)]. Available online: www.ansys.com.
Beer M., Kudelas D., Rybár R. A Numerical Analysis of the Thermal Energy Storage Based on Porous Gyroid Structure Filled with Sodium Acetate Trihydrate. Energies. 2023;16:309. doi: 10.3390/en16010309. DOI
Yang Y., Li M., Shu S., Xiao A. High order schemes based on upwind schemes with modified coefficients. J. Comput. Appl. Math. 2006;195:242–251. doi: 10.1016/j.cam.2005.04.071. DOI
Barth T., Jespersen D. The design and application of upwind schemes on unstructured meshes; Proceedings of the 27th Aerospace Sciences Meeting; Reno, NV, USA. 9–12 January 1989.
Maxa J., Hlavatá P., Vyroubal P. Using the Ideal and Real Gas Model for the Mathematical—Physics Analysis of the Experimental Chambre. ECS Trans. 2018;87:377–387. doi: 10.1149/08701.0377ecst. DOI
Gabániová Ľ., Kudelas D., Prčík M. Modelling Ground Collectors and Determination of the Influence of Technical Parameters, Installation and Geometry on the Soil. Energies. 2021;14:7153. doi: 10.3390/en14217153. DOI
Šabacká P., Maxa J., Bayer R., Vyroubal P., Binar T. Slip Flow Analysis in an Experimental Chamber Simulating Differential Pumping in an Environmental Scanning Electron Microscope. Sensors. 2022;22:9033. doi: 10.3390/s22239033. PubMed DOI PMC
Šabacká P., Neděla V., Maxa J., Bayer R. Application of Prandtl’s Theory in the Design of an Experimental Chamber for Static Pressure Measurements. Sensors. 2021;21:6849. doi: 10.3390/s21206849. PubMed DOI PMC
Xiao L., Hao X., Lei D., Tiezhi S. Flow structure and parameter evaluation of conical convergent–divergent nozzle supersonic jet flows. Phys. Fluids. 2023;35:066109.
Dynamická Viskozita plynů, E-tabulky. [(accessed on 28 August 2024)]. Available online: https://uchi.vscht.cz/studium/tabulky/viskozita-plyny.
The Engineering ToolBox, Nitrogen-Dynamic and Kinematic Viscosity vs. Temperature and Pressure. [(accessed on 20 August 2024)]. Available online: https://www.engineeringtoolbox.com/nitrogen-N2-dynamic-kinematic-viscosity-temperature-pressure-d_2067.html.
Pitchard P.J., Fox R.W., McDonald A.T. Introduction to Fluid Mechanics. John and Wiley and Sons; Hoboken, NJ, USA: 2011.
Hermann R. Supersonic Inlet Diffusers. Minneapolis-Honeywell Regulator Co., Aeronautical Division; Minneapolis, MN, USA: 1956.
Bayer R., Maxa J., Šabacká P. Energy Harvesting Using Thermocouple and Compressed Air. Sensors. 2021;21:6031. doi: 10.3390/s21186031. PubMed DOI PMC
Afkhami S., Fouladi N. Gas dynamics at starting and terminating phase of a supersonic exhaust diffuser with a conical nozzle. Phys. Fluids. 2024;36:036123. doi: 10.1063/5.0197296. DOI
Belo F.A., Soares M.B., Lima Filho A.C., Lima T.L.d.V., Adissi M.O. Accuracy and Precision Improvement of Temperature Measurement Using Statistical Analysis/Central Limit Theorem. Sensors. 2023;23:3210. doi: 10.3390/s23063210. PubMed DOI PMC
Drexler P., Čáp M., Fiala P., Steinbauer M., Kadlec R., Kaška M., Kočiš L. A Sensor System for Detecting and Localizing Partial Discharges in Power Transformers with Improved Immunity to Interferences. Sensors. 2019;19:923. doi: 10.3390/s19040923. PubMed DOI PMC