Mathematical-Physics Analyses of the Nozzle Shaping at the Aperture Gas Outlet into Free Space under ESEM Pressure Conditions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
38894227
PubMed Central
PMC11174927
DOI
10.3390/s24113436
PII: s24113436
Knihovny.cz E-zdroje
- Klíčová slova
- Ansys Fluent, CFD, ESEM, critical flow, electron dispersion, nozzle, shock wave,
- Publikační typ
- časopisecké články MeSH
The paper presents a methodology that combines experimental measurements and mathematical-physics analyses to investigate the flow behavior in a nozzle-equipped aperture associated with the solution of its impact on electron beam dispersion in an environmental scanning electron microscope (ESEM). The shape of the nozzle significantly influences the character of the supersonic flow beyond the aperture, especially the shape and type of shock waves, which are highly dense compared to the surrounding gas. These significantly affect the electron scattering, which influences the resulting image. This paper analyzes the effect of aperture and nozzle shaping under specific low-pressure conditions and its impact on the electron dispersion of the primary electron beam.
Faculty of Military Leadership University of Defence 662 10 Brno Czech Republic
Institute of Scientific Instruments of the CAS Královopolská 147 612 64 Brno Czech Republic
Zobrazit více v PubMed
Maxa J., Šabacká P., Mazal J., Neděla V., Binar T., Bača P., Talár J., Bayer R., Čudek P. The Impact of Nozzle Opening Thickness on Flow Characteristics and Primary Electron Beam Scattering in an Environmental Scanning Electron Microscope. Sensors. 2024;24:2166. doi: 10.3390/s24072166. PubMed DOI PMC
Maxa J., Neděla V. The impact of critical flow on the primary electron beam passage through differentially pumped chamber. Adv. Mil. Technol. 2011;6:39–46.
Dordevic B., Neděla V., Tihlaříková E., Trojan V., Havel L. Effects of copper and arsenic stress on the development of Norway spruce somatic embryos and their visualization with the environmental scanning electron microscope. New Biotechnol. 2019;48:35–43. doi: 10.1016/j.nbt.2018.05.005. PubMed DOI
Imrichová K., Veselý L., Gasser T.M., Loerting T., Neděla V., Heger D. Vitrification and increase of basicity in between ice Ih crystals in rapidly frozen dilute NaCl aqueous solutions. J. Chem. Phys. 2019;151:014503. doi: 10.1063/1.5100852. PubMed DOI
Stelate A., Tihlaříková E., Schwarzerová K., Neděla V., Petrášek J. Correlative Light-Environmental Scanning Electron Microscopy of Plasma Membrane Efflux Carriers of Plant Hormone Auxin. Biomolecules. 2021;11:1407. doi: 10.3390/biom11101407. PubMed DOI PMC
Vlašínová H., Neděla V., Dordevic B., Havel J. Bottlenecks in bog pine multiplication by somatic embryogenesis and their visualization with the environmental scanning electron microscope. Protoplasma. 2017;254:1487–1497. doi: 10.1007/s00709-016-1036-1. PubMed DOI
Schenkmayerová A., Bučko M., Gemeiner P., Treľová D., Lacík I., Chorvát D., Jr., Ačai P., Polakovič M., Lipták L., Rebroš M., et al. Physical and Bioengineering Properties of Polyvinyl Alcohol Lens-Shaped Particles Versus Spherical Polyelectrolyte Complex Microcapsules as Immobilisation Matrices for a Whole-Cell Baeyer–Villiger Monooxygenase. Appl. Biochem. Biotechnol. 2014;174:1834–1849. doi: 10.1007/s12010-014-1174-x. PubMed DOI
Krajčovič T., Bučko M., Vikartovská A., Lacík I., Uhelská L., Chorvát D., Neděla V., Tihlaříková E., Gericke M., Heinze T., et al. Polyelectrolyte Complex Beads by Novel Two-Step Process for Improved Performance of Viable Whole-Cell Baeyer-Villiger Monoxygenase by Immobilization. Catalysts. 2017;7:353–364. doi: 10.3390/catal7110353. DOI
Neděla V., Tihlaříková E., Maxa J., Imrichová K., Bučko M., Gemeiner P. Simulation-based optimisation of thermodynamic conditions in the ESEM for dynamical in-situ study of spherical polyelectrolyte complex particles in their native state. Ultramicroscopy. 2020;211:112954. doi: 10.1016/j.ultramic.2020.112954. PubMed DOI
Jirák J., Neděla V., Černoch P., Čudek P., Runštuk J. Scintillation SE detector for variable pressure scanning electron microscopes. J. Microsc. 2010;239:233–238. doi: 10.1111/j.1365-2818.2010.03377.x. PubMed DOI
Danilatos G.D. Electron scattering cross-section measurements in ESEM. Micron. 2013;45:1–16. doi: 10.1016/j.micron.2012.10.002. PubMed DOI
Danilatos G.D. ESEM modifications to LEO SUPRA 35 VP FESEM. Micron. 2013;44:238–245. doi: 10.1016/j.micron.2012.06.014. PubMed DOI
Danilatos G.D. Velocity and ejector-jet assisted differential pumping: Novel design stages for environmental SEM. Micron. 2012;43:600–611. doi: 10.1016/j.micron.2011.10.023. DOI
Danilatos G.D. Gas-flow field in the environmental SEM; Proceedings of the Annual Meeting of the Electron Microscopy Society of America; Boston, MA, USA. 16–21 August 1992;
Danilatos G.D. Electron Beam Loss In Commercial Esem; Proceedings of the 16th Australian Conference on Electron Microscopy; Canberra, Australia. 6–11 February 2000; pp. 1–18.
Danilatos G.D. Electron beam current loss at the high-vacuum-high-pressure boundary in the environmental scanning electron microscope. Microsc. Microanal. 2001;7:397–406. doi: 10.1007/s10005-001-0008-0. DOI
Danilatos G.D., Rattenberger J., Dracopoulos V. Beam transfer characteristics of a commercial environmental SEM and a low vacuum SEM. J. Microsc. 2010;242:166–180. doi: 10.1111/j.1365-2818.2010.03455.x. PubMed DOI
Danilatos G.D. Figure of merit for environmental SEM and its implications. J. Microsc. 2011;244:159–169. doi: 10.1111/j.1365-2818.2011.03521.x. PubMed DOI
Li T., Song Q., He G., Xia H., Li H., Gui J., Dang H. A Method for Detecting the Vacuum Degree of Vacuum Glass Based on Digital Holography. Sensors. 2023;23:2468. doi: 10.3390/s23052468. PubMed DOI PMC
Rybár R., Kudelas D., Beer M., Horodníková J. Elimination of Thermal Bridges in the Construction of a Flat Low-Pressure Solar Collector by Means of a Vacuum Thermal Insulation Bushing. ASME. J. Sol. Energy Eng. 2015;137:054501. doi: 10.1115/1.4030230. DOI
van Eck H.J.N., Koppers W.R., van Rooij G.J., Goedheer W.J., Engeln R., Schram D.C., Cardozo N.J.L., Kleyn A.W. Modeling and experiments on differential pumping in linear plasma generators operating at high gas flows. J. Appl. Phys. 2009;105:063307. doi: 10.1063/1.3086622. DOI
Roy S., Raju R., Chuang H.F., Cruden B.A., Meyyappan M. Modeling gas flow through microchannels and nanopores. J. Appl. Phys. 2003;93:4870–4879. doi: 10.1063/1.1559936. DOI
Daněk M. Aerodynamika a Mechanika Letu. VVLŠ SNP; Košice, Slovakia: 1990. p. 83.
Šabacká P., Neděla V., Maxa J., Bayer R. Application of Prandtl’s Theory in the Design of an Experimental Chamber for Static Pressure Measurements. Sensors. 2021;21:6849. doi: 10.3390/s21206849. PubMed DOI PMC
Salga J., Hoření B. Tabulky Proudění Plynu. UNOB; Brno, Czech Republic: 1997.
Thévenin D., Janiga G. Optimization and Computational Fluid Dynamics. 1st ed. Springer; Berlin/Heidelberg, Germany: 2008.
Yadav M., Yadav R.S., Wang C.-H. Lattice Boltzmann simulations of flow inside a converging and diverging nozzle with the insertion of single and multiple circular cylinders. Phys. Fluids. 2023;35:084110. doi: 10.1063/5.0157903. DOI
Hassanzadeh A., Bakhsh M.S., Dadvand A. Numerical Study of The Effect of Wall Injection on The Cavitation Phenomenon In Diesel Injector. Eng. Appl. Comput. Fluid Mech. 2014;8:562–573. doi: 10.1080/19942060.2014.11083307. DOI
Liu S., Bahrami D., Kalbasi R., Jahangiri M., Lu Y., Yang X., Band S.S., Chau K.-W., Mosavi A. Efficacy of applying discontinuous boundary condition on the heat transfer and entropy generation through a slip microchannel equipped with nanofluid. Eng. Appl. Comput. Fluid Mech. 2022;16:952–964. doi: 10.1080/19942060.2022.2057591. DOI
Moran M.J., Shapiro H.N. Fundamentals of Engineering Thermodynamics. 3rd ed. John Wiley; New York, NY, USA: 1998.
Škorpík J. Transformační Technologie: Proudění Plynů a Par Tryskami. 2nd ed. BUT; Brno, Czech Republic: 2023.
Baehr H.D., Kabelac S. Thermodynamik. 14th ed. Springer; Berlin/Heidelberg, Germany: 2009.
Dutta P.P., Benken A.C., Li T., Ordonez-Varela J.R., Gianchandani Y.B. Passive Wireless Pressure Gradient Measurement System for Fluid Flow Analysis. Sensors. 2023;23:2525. doi: 10.3390/s23052525. PubMed DOI PMC
Ansys Fluent Theory Guide [Online] [(accessed on 21 October 2022)]. Available online: www.ansys.com.
Beer M., Kudelas D., Rybár R. A Numerical Analysis of the Thermal Energy Storage Based on Porous Gyroid Structure Filled with Sodium Acetate Trihydrate. Energies. 2023;16:309. doi: 10.3390/en16010309. DOI
Barth T., Jespersen D. The design and application of upwind schemes on unstructured meshes; Proceedings of the 27th Aerospace Sciences Meeting; Reno, NV, USA. 9–12 January 1989.
Li X., Wu Y., Shan X., Zhang H., Chen Y. Estimation of Airflow Parameters for Tail-Sitter UAV through a 5-Hole Probe Based on an ANN. Sensors. 2023;23:417. doi: 10.3390/s23010417. PubMed DOI PMC
Maxa J., Hlavatá P., Vyroubal P. Using the Ideal and Real Gas Model for the Mathematical—Physics Analysis of the Experimental Chambre. ECS Trans. 2018;87:377–387. doi: 10.1149/08701.0377ecst. DOI
Gabániová Ľ., Kudelas D., Prčík M. Modelling Ground Collectors and Determination of the Influence of Technical Parameters, Installation and Geometry on the Soil. Energies. 2021;14:7153. doi: 10.3390/en14217153. DOI
Xiao L., Hao X., Lei D., Tiezhi S. Flow structure and parameter evaluation of conical convergent–divergent nozzle supersonic jet flows. Phys. Fluids. 2023;35:066109.
Šabacká P., Maxa J., Bayer R., Vyroubal P., Binar T. Slip Flow Analysis in an Experimental Chamber Simulating Differential Pumping in an Environmental Scanning Electron Microscope. Sensors. 2022;22:9033. doi: 10.3390/s22239033. PubMed DOI PMC
Bayer R., Maxa J., Šabacká P. Energy Harvesting Using Thermocouple and Compressed Air. Sensors. 2021;21:6031. doi: 10.3390/s21186031. PubMed DOI PMC
Hylský J., Strachala D., Hladík J., Čudek P., Kazda T., Vaněk J., Vyroubal P., Starý J. Design of P-Type Photovoltaic Cells Resistant to Potential-Induced Degradation. IEEE J. Photovolt. 2018;8:1215–1221. doi: 10.1109/JPHOTOV.2018.2841188. DOI
Pieniążek J., Cieciński P., Ficek D., Szumski M. Dynamic Response of the Pitot Tube with Pressure Sensor. Sensors. 2023;23:2843. doi: 10.3390/s23052843. PubMed DOI PMC
Drexler P., Čáp M., Fiala P., Steinbauer M., Kadlec R., Kaška M., Kočiš L. A Sensor System for Detecting and Localizing Partial Discharges in Power Transformers with Improved Immunity to Interferences. Sensors. 2019;19:923. doi: 10.3390/s19040923. PubMed DOI PMC
Reimer L. Scanning Elektron Microscopy: Physics of Image Formation and Microanalysis. Springer; Berlin/Heidelberg, Germany: 1985.
Frank L., Král J. Metody Analýzy Povrchů: Iontové, Sondové a Speciální Metody. Academia; Prague, Czech Republic: 2002. 489p.