The Impact of Nozzle Opening Thickness on Flow Characteristics and Primary Electron Beam Scattering in an Environmental Scanning Electron Microscope

. 2024 Mar 28 ; 24 (7) : . [epub] 20240328

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38610377

This paper describes the methodology of combining experimental measurements with mathematical-physics analyses in the investigation of flow in the aperture and nozzle. The aperture and nozzle separate the differentially pumped chamber from the specimen chamber in an environmental scanning electron microscope (ESEM). Experimental measurements are provided by temperature and pressure sensors that meet the demanding conditions of cryogenic temperature zones and low pressures. This aperture maintains the required pressure difference between the chambers. Since it separates the large pressure gradient, critical flow occurs on it and supersonic gas flow with the characteristic properties of critical flow in the state variables occurs behind it. As a primary electron beam passes through the differential pumped chamber and the given aperture, the aperture is equipped with a nozzle. The shape of the nozzle strongly influences the character of the supersonic flow. The course of state variables is also strongly influenced by this shape; thus, it affects the number of collisions the primary beam's electrons have with gas molecules, and so the resulting image. This paper describes experimental measurements made using sensors under laboratory conditions in a specially created experimental chamber. Then, validation using mathematical-physical analysis in the Ansys Fluent system is described.

Zobrazit více v PubMed

Drexler P., Čáp M., Fiala P., Steinbauer M., Kadlec R., Kaška M., Kočiš L. A Sensor System for Detecting and Localizing Partial Discharges in Power Transformers with Improved Immunity to Interferences. Sensors. 2019;19:923. doi: 10.3390/s19040923. PubMed DOI PMC

Fiala P., Sadek V., Dohnal P., Bachorec T. Basic experiments with model of inductive flowmeter; Proceedings of the Electromagnetics Research Symposium: PIERS 2008; Cambridge, MA, USA. 2–6 July 2008; pp. 1044–1048.

Gennari S., Maglia F., Anselmi-Tamburini U., Spinolo G. SHS of NbSi2: A Comparison Between Experiments and Simulations. Monatshefte Für Chem. Chem. Mon. 2005;136:1871–1875. doi: 10.1007/s00706-005-0386-8. DOI

Danilatos G.D. Velocity and ejector-jet assisted differential pumping: Novel design stages for environmental SEM. Micron. 2012;43:600–611. doi: 10.1016/j.micron.2011.10.023. DOI

Danilatos G.D., Rattenberger J., Dracopoulos V. Beam transfer characteristics of a commercial environmental SEM and a low vacuum SEM. J. Microsc. 2011;242:166–180. doi: 10.1111/j.1365-2818.2010.03455.x. PubMed DOI

Danilatos G.D. Figure of merit for environmental SEM and its implications. J. Microsc. 2011;244:159–169. doi: 10.1111/j.1365-2818.2011.03521.x. PubMed DOI

Danilatos G.D. Optimum beam transfer in the environmental scanning electron microscope. J. Microsc. 2009;234:26–37. doi: 10.1111/j.1365-2818.2009.03148.x. PubMed DOI

van Eck H.J.N., Koppers W.R., van Rooij G.J., Goedheer W.J., Engeln R., Schram D.C., Cardozo N.J.L., Kleyn A.W. Modeling and experiments on differential pumping in linear plasma generators operating at high gas flows. J. Appl. Phys. 2009;105:63307. doi: 10.1063/1.3086622. DOI

Roy S., Raju R., Chuang H.F., Cruden B.A., Meyyappan M. Modeling gas flow through microchannels and nanopores. J. Appl. Phys. 2003;93:4870–4879. doi: 10.1063/1.1559936. DOI

Daněk M. Aerodynamika a Mechanika Letu. VVLŠ SNP; Košice, Slovak Republic: 1990. p. 83.

Neděla V., Tihlaříková E., Maxa J., Imrichová K., Bučko M., Gemeiner P. Simulation-based optimisation of thermodynamic conditions in the ESEM for dynamical in-situ study of spherical polyelectrolyte complex particles in their native state. Ultramicroscopy. 2020;211:112954. doi: 10.1016/j.ultramic.2020.112954. PubMed DOI

Đorđević B., Neděla V., Tihlaříková E., Trojan V., Havel L. Effects of copper and arsenic stress on the development of Norway spruce somatic embryos and their visualization with the environmental scanning electron microscope. New Biotechnol. 2019;48:35–43. doi: 10.1016/j.nbt.2018.05.005. PubMed DOI

Imrichová K., Veselý L., Gasser T.M., Loerting T., Neděla V., Heger D. Vitrification and increase of basicity in between ice Ih crystals in rapidly frozen dilute NaCl aqueous solutions. J. Chem. Phys. 2019;151:014503. doi: 10.1063/1.5100852. PubMed DOI

Maxa J., Neděla V. The impact of critical flow on the primary electron beam passage through differentially pumped chamber. Adv. Mil. Technol. 2011;6:39–46.

Ritscher A., Schmetterer C., Ipser H. Pressure dependence of the tin–phosphorus phase diagram. Monatshefte Für Chem. Chem. Mon. 2012;143:1593–1602. doi: 10.1007/s00706-012-0861-y. DOI

Stelate A., Tihlaříková E., Schwarzerová K., Neděla V., Petrášek J. Correlative Light-Environmental Scanning Electron Microscopy of Plasma Membrane Efflux Carriers of Plant Hormone Auxin. Biomolecules. 2021;11:1407. doi: 10.3390/biom11101407. PubMed DOI PMC

Li T., Song Q., He G., Xia H., Li H., Gui J., Dang H. A Method for Detecting the Vacuum Degree of Vacuum Glass Based on Digital Holography. Sensors. 2023;23:2468. doi: 10.3390/s23052468. PubMed DOI PMC

Schenkmayerová A., Bučko M., Gemeiner P., Treľová D., Lacík I., Chorvát D., Ačai P., Polakovič M., Lipták L., Rebroš M., et al. Physical and Bioengineering Properties of Polyvinyl Alcohol Lens-Shaped Particles Versus Spherical Polyelectrolyte Complex Microcapsules as Immobilisation Matrices for a Whole-Cell Baeyer–Villiger Monooxygenase. Appl. Biochem. Biotechnol. 2014;174:1834–1849. doi: 10.1007/s12010-014-1174-x. PubMed DOI

Rathakrishnan E. Performance of double expansion ramp nozzle. Phys. Fluids. 2023;35:150295. doi: 10.1063/5.0150295. DOI

Dutta P.P., Benken A.C., Li T., Ordonez-Varela J.R., Gianchandani Y.B. Passive Wireless Pressure Gradient Measurement System for Fluid Flow Analysis. Sensors. 2023;23:2525. doi: 10.3390/s23052525. PubMed DOI PMC

Maxa J., Hlavatá P., Vyroubal P. Analysis of impact of conic aperture in differentially pumped chamber. Adv. Millitary Technol. 2019;14:151–161. doi: 10.3849/aimt.01268. DOI

Maxa J., Neděla V., Šabacká P., Binar T. Impact of Supersonic Flow in Scintillator Detector Apertures on the Resulting Pumping Effect of the Vacuum Chambers. Sensors. 2023;23:4861. doi: 10.3390/s23104861. PubMed DOI PMC

Xue Z., Zhou L., Liu D. Accurate Numerical Modeling for 1D Open-Channel Flow with Varying Topography. Water. 2023;15:2893. doi: 10.3390/w15162893. DOI

Liu Q., Feng X.-B. Numerical Modelling of Microchannel Gas Flows in the Transition Flow Regime Using the Cascaded Lattice Boltzmann Method. Entropy. 2020;22:41. doi: 10.3390/e22010041. PubMed DOI PMC

Salga J., Hoření B. Tabulky Proudění Plynu. UNOB; Brno, Czech Republic: 1997.

Thévenin D., Janiga G. Optimization and Computational Fluid Dynamics. 1st ed. Springer; Berlin/Heidelberg, Germany: 2008.

Yadav M., Yadav R.S., Wang C.-H. Lattice Boltzmann simulations of flow inside a converging and diverging nozzle with the insertion of single and multiple circular cylinders. Phys. Fluids. 2023;35:84110. doi: 10.1063/5.0157903. DOI

Hassanzadeh A., Bakhsh M.S., Dadvand A. Numerical Study of The Effect of Wall Injection on The Cavitation Phenomenon In Diesel Injector. Eng. Appl. Comput. Fluid Mech. 2014;8:562–573. doi: 10.1080/19942060.2014.11083307. DOI

Liu S., Bahrami D., Kalbasi R., Jahangiri M., Lu Y., Yang X., Band S.S., Chau K.-W., Mosavi A. Efficacy of applying discontinuous boundary condition on the heat transfer and entropy generation through a slip microchannel equipped with nanofluid. Eng. Appl. Comput. Fluid Mech. 2022;16:952–964. doi: 10.1080/19942060.2022.2057591. DOI

Moran M.J., Shapiro H.N. Fundamentals of Engineering Thermodynamics. 3rd ed. Wiley; Hoboken, NJ, USA: 1998.

Škorpík J. Transformační Technologie: Proudění Plynů a Par Tryskami. 2nd ed. Czech Republic: 2023.

Uruba V. Trbulence. 2nd ed. ČVUT v Praze, Fakulta strojní; Praha, Czech Republic: 2014.

Baehr H.D., Kabelac S. Thermodynamik. 14th ed. Springer; Berlin/Heidelberg, Germany: 2009.

Ansys Fluent Theory Guide. [(accessed on 21 October 2022)]. Available online: www.ansys.com.

Barth T., Jespersen D. The design and application of upwind schemes on unstructured meshes; Proceedings of the 27th Aerospace Sciences Meeting; Reno, NV, USA. 9–12 January 1989.

Li X., Wu Y., Shan X., Zhang H., Chen Y. Estimation of Airflow Parameters for Tail-Sitter UAV through a 5-Hole Probe Based on an ANN. Sensors. 2023;23:417. doi: 10.3390/s23010417. PubMed DOI PMC

Bayer R., Maxa J., Šabacká P. Energy Harvesting Using Thermocouple and Compressed Air. Sensors. 2021;21:6031. doi: 10.3390/s21186031. PubMed DOI PMC

Xiao L., Hao X., Lei D., Tiezhi S. Flow structure and parameter evaluation of conical convergent–divergent nozzle supersonic jet flows. Phys. Fluids. 2023;35:151556.

Šabacká P., Maxa J., Bayer R., Vyroubal P., Binar T. Slip Flow Analysis in an Experimental Chamber Simulating Differential Pumping in an Environmental Scanning Electron Microscope. Sensors. 2022;22:9033. doi: 10.3390/s22239033. PubMed DOI PMC

Dejč M.J. Technická Dynamika Plynů. SNTL; Singapore: 1967.

Uruba V. Metody Analýzy Signálů Při Studio Nestacionárních Jevů v Proudících Tekutinách. Habilitační Práce; Praha, Czech Republic: 2006.

Hlavatá P., Maxa J., Vyroubal P. Analysis of Pitot Tube Static Probe Angle in the Experimental Chamber Conditions. ECS Trans. 2018;87:369–375. doi: 10.1149/08701.0369ecst. DOI

Bryer D.W., Pankhurst R.C. Pressure-Probe Methods for Determining Wind Speed and Flow Direction. 1st ed. Her Majesty’s Stationery Office; London, UK: 1971.

Chue S.H. Pressure probes for fluid measurement. Prog. Aerosp. Sci. 1975;16:147–223. doi: 10.1016/0376-0421(75)90014-7. DOI

Pieniążek J., Cieciński P., Ficek D., Szumski M. Dynamic Response of the Pitot Tube with Pressure Sensor. Sensors. 2023;23:2843. doi: 10.3390/s23052843. PubMed DOI PMC

Yu Y., Xu J., Mo J., Wang M. Principal Parameters in Flow Separation Patterns of Over-Expanded Single Expansion RAMP Nozzle. Eng. Appl. Comput. Fluid Mech. 2014;8:274–288. doi: 10.1080/19942060.2014.11015513. DOI

Chen Y.-J., Chen Z.-S. A prediction model of wall shear stress for ultra-high-pressure water-jet nozzle based on hybrid BP neural network. Eng. Appl. Comput. Fluid Mech. 2022;16:1902–1920. doi: 10.1080/19942060.2022.2123404. DOI

Reimer L. Scanning Elektron Microscopy: Physics of Image Formation and Microanalysis. Springer; Berlin/Heidelberg, Germany: 1985.

Frank L., Král J. Metody Analýzy Povrchů: Iontové, Sondové a Speciální Metody. Academia; Praha, Czech Republic: 2002. 489p.

Martínez-González A., Moreno-Hernández D., Guerrero-Viramontes J.A., León-Rodríguez M., Zamarripa-Ramírez J.C.I., Carrillo-Delgado C. Temperature Measurement of Fluid Flows by Using a Focusing Schlieren Method. Sensors. 2019;19:12. doi: 10.3390/s19010012. PubMed DOI PMC

Abbas Q., Nordström J. Weak Versus Strong No-Slip Boundary Conditions for the Navier-Stokes Equations. Eng. Appl. Comput. Fluid Mech. 2010;4:29–38. doi: 10.1080/19942060.2010.11015297. DOI

Mohan B., Yang W., Chou S. Cavitation in Injector Nozzle Holes—A Parametric Study. Eng. Appl. Comput. Fluid Mech. 2014;8:70–81. doi: 10.1080/19942060.2014.11015498. DOI

Yu Y., Shademan M., Barron R.M., Balachandar R. CFD Study of Effects of Geometry Variations on Flow in a Nozzle. Eng. Appl. Comput. Fluid Mech. 2012;6:412–425. doi: 10.1080/19942060.2012.11015432. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...