numerical simulation
Dotaz
Zobrazit nápovědu
PURPOSE OF THE STUDY In developing new or modifying the existing surgical treatment methods of spine conditions an integral part of ex vivo experiments is the assessment of mechanical, kinematic and dynamic properties of created constructions. The aim of the study is to create an appropriately validated numerical model of canine cervical spine in order to obtain a tool for basic research to be applied in cervical spine surgeries. For this purpose, canine is a suitable model due to the occurrence of similar cervical spine conditions in some breeds of dogs and in humans. The obtained model can also be used in research and in clinical veterinary practice. MATERIAL AND METHODS In order to create a 3D spine model, the LightSpeed 16 (GE, Milwaukee, USA) multidetector computed tomography was used to scan the cervical spine of Doberman Pinscher. The data were transmitted to Mimics 12 software (Materialise HQ, Belgium), in which the individual vertebrae were segmented on CT scans by thresholding. The vertebral geometry was exported to Rhinoceros software (McNeel North America, USA) for modelling, and subsequently the specialised software Abaqus (Dassault Systemes, France) was used to analyse the response of the physiological spine model to external load by the finite element method (FEM). All the FEM based numerical simulations were considered as nonlinear contact statistic tasks. In FEM analyses, angles between individual spinal segments were monitored in dependence on ventroflexion/ /dorziflexion. The data were validated using the latero-lateral radiographs of cervical spine of large breed dogs with no evident clinical signs of cervical spine conditions. The radiographs within the cervical spine range of motion were taken at three different positions: in neutral position, in maximal ventroflexion and in maximal dorziflexion. On X-rays, vertebral inclination angles in monitored spine positions were measured and compared with the results obtain0ed from FEM analyses of the numerical model. RESULTS It is obvious from the results that the physiological spine model tested by the finite element method shows a very similar mechanical behaviour as the physiological canine spine. The biggest difference identified between the resulting values was reported in C6-C7 segment in dorsiflexion (Δφ = 5.95%), or in C4-C5 segment in ventroflexion (Δφ = -3.09%). CONCLUSIONS The comparisons between the mobility of cervical spine in ventroflexion/dorsiflexion on radiographs of the real models and the simulated numerical model by finite element method showed a high degree of results conformity with a minimal difference. Therefore, for future experiments the validated numerical model can be used as a tool of basic research on condition that the results of analyses carried out by finite element method will be affected only by an insignificant error. The computer model, on the other hand, is merely a simplified system and in comparison with the real situation cannot fully evaluate the dynamics of the action of forces in time, their variability, and also the individual effects of supportive skeletal tissues. Based on what has been said above, it is obvious that there is a need to exercise restraint in interpreting the obtained results. Key words: cervical spine, kinematics, numerical modelling, finite element method, canine.
- MeSH
- krční obratle diagnostické zobrazování fyziologie MeSH
- počítačová rentgenová tomografie MeSH
- počítačová simulace * MeSH
- psi MeSH
- rozsah kloubních pohybů * fyziologie MeSH
- zobrazování trojrozměrné MeSH
- zvířata MeSH
- Check Tag
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
... Recurrence Formula 219 -- 5.5 Complex Arithmetic 225 -- 5.6 Quadratic and Cubic Equations 227 -- 5.7 Numerical ... ... Programming: The Simplex Method 526 -- 10.11 Linear Programming: Interior-Point Methods 537 -- 10.12 Simulated ... ... 685 -- 13.9 Computing Fourier Integrals Using the FFT 692 -- 13.10 Wavelet Transforms 699 -- 13.11 Numerical ... ... Equations 931 -- 17.6 Multistep, Multivalue, and Predictor-Corrector Methods 942 -- 17.7 Stochastic Simulation ... ... Delaunay Triangulation 1141 -- 21.8 Quadtrees and Octrees: Storing Geometrical Objects 1149 -- 22 Less-Numerical ...
3rd ed. xxi, 1235 s. : il. ; 27 cm + 1 CD-ROM
- MeSH
- matematické výpočty počítačové MeSH
- matematika MeSH
- numerická analýza pomocí počítače * MeSH
- Publikační typ
- monografie MeSH
... 1.Introduction -- 2.Numerical Integrators -- 3.Analyzing Geometric Integrators -- 4.The Stability Threshold ... ... Numerical Methods for Stochastic Molecular Dynamics -- 8. ...
Interdisciplinary Applied Mathematics, ISSN 0939-6047 39
1st edition XXII, 443 stran : ilustrace ; 24 cm
- MeSH
- matematika MeSH
- simulace molekulární dynamiky MeSH
- Publikační typ
- monografie MeSH
- Konspekt
- Matematika
- NLK Obory
- přírodní vědy
Non-invasive, focal neurostimulation with ultrasound is a potentially powerful neuroscientific tool that requires effective transcranial focusing of ultrasound to develop. Time-reversal (TR) focusing using numerical simulations of transcranial ultrasound propagation can correct for the effect of the skull, but relies on accurate simulations. Here, focusing requirements for ultrasonic neurostimulation are established through a review of previously employed ultrasonic parameters, and consideration of deep brain targets. The specific limitations of finite-difference time domain (FDTD) and k-space corrected pseudospectral time domain (PSTD) schemes are tested numerically to establish the spatial points per wavelength and temporal points per period needed to achieve the desired accuracy while minimizing the computational burden. These criteria are confirmed through convergence testing of a fully simulated TR protocol using a virtual skull. The k-space PSTD scheme performed as well as, or better than, the widely used FDTD scheme across all individual error tests and in the convergence of large scale models, recommending it for use in simulated TR. Staircasing was shown to be the most serious source of error. Convergence testing indicated that higher sampling is required to achieve fine control of the pressure amplitude at the target than is needed for accurate spatial targeting.
This study presents a combined experimental and numerical investigation of fiber transport and deposition in a realistic model of the female respiratory tract, extending to the seventh generation of branching. Numerical simulations were performed using the Euler-Lagrange Euler-Rotation (ELER) method, an efficient alternative to conventional Finite Volume Methods that benefits from explicit formulation and vast scalability, enabling fast parallelization on high-performance clusters. The ELER method was coupled with the Lattice Boltzmann Method (LBM) to simulate fiber dynamics under a realistic inspiratory flow profile. Experimental validation was conducted using an identical physical airway replica. The results demonstrated good agreement between simulations and experiments in the upper airways and trachea, with some discrepancies in the bifurcations, likely owing to the challenges of modeling complex turbulent flow with ELER. This method is more accurate than corresponding effective diameter simulations. Deposition patterns were analyzed as a function of fiber dimensions, revealing higher accuracy of the ELER method for smaller particles and confirming the tendency of higher aspect ratio fibers to penetrate deeper into the lungs. The orientation-dependent deposition mechanism was deployed, underscoring the importance of solving the actual orientations of the fibers. While advancing our understanding of fiber transport in female airways, the findings also reveal limitations in current numerical techniques, particularly in bifurcations. This study emphasizes the distinct behavior of fibrous versus spherical particles, with fibers exhibiting a greater propensity to reach deeper lung regions, which has significant implications for inhalation toxicology and drug delivery.
- MeSH
- aplikace inhalační MeSH
- biologické modely * MeSH
- dýchací soustava * MeSH
- lidé MeSH
- plíce MeSH
- počítačová simulace MeSH
- trachea * fyziologie MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH