Impact of Supersonic Flow in Scintillator Detector Apertures on the Resulting Pumping Effect of the Vacuum Chambers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37430777
PubMed Central
PMC10223060
DOI
10.3390/s23104861
PII: s23104861
Knihovny.cz E-zdroje
- Klíčová slova
- Ansys Fluent, ESEM, aperture, critical flow, one-dimensional flow theory, pressure sensor, scintillation detector,
- Publikační typ
- časopisecké články MeSH
The article describes the combination of experimental measurements with mathematical-physics analyses in flow investigation in the chambers of the scintillator detector, which is a part of the environmental scanning electron microscope. The chambers are divided with apertures by small openings that keep the desirable pressure differences between three chambers: The specimen chamber, the differentially pumped intermediate chamber, and the scintillator chamber. There are conflicting demands on these apertures. On the one hand, the diameter of the apertures must be as big as possible so that they incur minimal losses of the passing secondary electrons. On the other hand, it is possible to magnify the apertures only to a certain extent so the rotary and turbomolecular vacuum pump can maintain the required operating pressures in separate chambers. The article describes the combination of experimental measurement using an absolute pressure sensor and mathematical physics analysis to map all the specifics of the emerging critical supersonic flow in apertures between the chambers. Based on the experiments and their tuned analyses, the most effective variant of combining the sizes of each aperture concerning different operating pressures in the detector is determined. The situation is made more difficult by the described fact that each aperture separates a different pressure gradient, so the gas flow through each aperture has its own characteristics with a different type of critical flow, and they influence each other, thereby influencing the final passage of secondary electrons detected by the scintillator and thus affecting the resulting displayed image.
Zobrazit více v PubMed
Vyroubal P., Maxa J., Neděla V., Jirák J., Hladká K. Apertures with Laval Nozzle and Circular Orifice in Secondary Electron Detector for Environmental Scanning Electron Microscope. Adv. Mil. Technol. 2013;8:59–69.
Neděla V. Methods for Additive Hydration Allowing Observation of Fully Hydrated State of Wet Samples in Environmental SEM. Microsc. Res. Tech. 2007;70:95–100. doi: 10.1002/jemt.20390. PubMed DOI
Tihlaříková E., Neděla V., Dordevic B. In-situ preparation of plant samples in ESEM for energy dispersive X-ray microanalysis and repetitive observation in SEM and ESEM. Sci. Rep. 2019;9:2300. doi: 10.1038/s41598-019-38835-w. PubMed DOI PMC
Navrátilová E., Tihlaříková E., Neděla V., Rovnaníková P., Pavlík J. Effect of the preparation of lime putties on their properties. Sci. Rep. 2017;7:17260. doi: 10.1038/s41598-017-17527-3. PubMed DOI PMC
Krejčí J., Sajdlová Z., Neděla V., Flodrová E., Šejnohová R., Vránová H., Plička R. Effective Surface Area of Electrochemical Sensors. J. Electrochem. Soc. 2014;161:B147–B150. doi: 10.1149/2.091406jes. DOI
Neděla V. Controlled dehydration of a biological sample using an alternative form of environmental SEM. J. Microsc. 2010;237:7–11. doi: 10.1111/j.1365-2818.2009.03216.x. PubMed DOI
Schenkmayerová A., Bučko M., Gemeiner P., Treľová D., Lacík I., Chorvát D., Jr., Ačai P., Polakovič M., Lipták L., Rebroš M., et al. Physical and Bioengineering Properties of Polyvinyl Alcohol Lens-Shaped Particles Versus Spherical Polyelectrolyte Complex Microcapsules as Immobilisation Matrices for a Whole-Cell Baeyer–Villiger Monooxygenase. Appl. Biochem. Biotechnol. 2014;174:1834–1849. doi: 10.1007/s12010-014-1174-x. PubMed DOI
Neděla V., Hřib J., Havel L., Hudec J., Runštuk J. Imaging of Norway spruce early somatic embryos with the ESEM, Cryo-SEM and laser scanning microscope. Micron. 2016;84:67–71. doi: 10.1016/j.micron.2016.02.011. PubMed DOI
Neděla V., Tihlaříková E., Maxa J., Imrichová K., Bučko M., Gemeiner P. Simulation-based optimisation of thermodynamic conditions in the ESEM for dynamical in-situ study of spherical polyelectrolyte complex particles in their native state. Ultramicroscopy. 2020;211:112954. doi: 10.1016/j.ultramic.2020.112954. PubMed DOI
Neděla V., Konvalina I., Lencová B., Zlámal J. Comparison of calculated, simulated and measured signal amplification in variable pressure SEM. Nucl. Instrum. Methods Phys. Res. Sect. A. 2011;645:79–83. doi: 10.1016/j.nima.2010.12.200. DOI
Neděla V., Konvalina I., Oral M., Hudec J. The Simulation of Energy Distribution of Electrons Detected by Segmental Ionization Detector in High Pressure Conditions of ESEM. Microsc. Microanal. 2015;21:264–269. doi: 10.1017/S1431927615013483. PubMed DOI
Jirák J., Neděla V., Černoch P., Čudek P., Runštuk J. Scintillation SE detector for variable pressure scanning electron microscopes. J. Microsc. 2010;239:233–238. doi: 10.1111/j.1365-2818.2010.03377.x. PubMed DOI
Neděla V., Tihlaříková E., Runštuk J., Hudec J. High-efficiency detector of secondary and backscattered electrons for low-dose imaging in the ESEM. Ultramicroscopy. 2018;184:1–11. doi: 10.1016/j.ultramic.2017.08.003. PubMed DOI
Stelate A., Tihlaříková E., Schwarzerová K., Neděla V., Petrášek J. Correlative Light-Environmental Scanning Electron Microscopy of Plasma Membrane Efflux Carriers of Plant Hormone Auxin. Biomolecules. 2021;11:1407. doi: 10.3390/biom11101407. PubMed DOI PMC
Maxová A., Maxa J., Šabacká P. The impact of pumping velocity on temperature running in chambers of experimental system. ECS Trans. 2020;99:317–323. doi: 10.1149/09901.0317ecst. DOI
Pieniążek J., Cieciński P., Ficek D., Szumski M. Dynamic Response of the Pitot Tube with Pressure Sensor. Sensors. 2023;23:2843. doi: 10.3390/s23052843. PubMed DOI PMC
Li T., Song Q., He G., Xia H., Li H., Gui J., Dang H. A Method for Detecting the Vacuum Degree of Vacuum Glass Based on Digital Holography. Sensors. 2023;23:2468. doi: 10.3390/s23052468. PubMed DOI PMC
Fiala P., Kadlec R., Zukal J. Measuring fluid flow velocities in the context of industry 4.0. Measurement. 2019;2019:295–298. doi: 10.23919/measurement47340.2019.8780025. DOI
Fiala P., Sadek V., Dohnal P., Bachorec T. Basic experiments with model of inductive flowmeter. Prog. Electromagn. Res. Symp. 2008;2:1044–1048.
Janoušek J., Jambor V., Marcoň P., Dohnal P., Synková H., Fiala P. Using UAV-based photogrammetry to obtain correlation between the vegetation indices and chemical analysis of agricultural crops. Remote Sens. 2021;13:1878. doi: 10.3390/rs13101878. DOI
Drexler P., Čáp M., Fiala P., Steinbauer M., Kadlec R., Kaška M., Kočiš L. A Sensor System for Detecting and Localizing Partial Discharges in Power Transformers with Improved Immunity to Interferences. Sensors. 2019;19:923. doi: 10.3390/s19040923. PubMed DOI PMC
Dutta P.P., Benken A.C., Li T., Ordonez-Varela J.R., Gianchandani Y.B. Passive Wireless Pressure Gradient Measurement System for Fluid Flow Analysis. Sensors. 2023;23:2525. doi: 10.3390/s23052525. PubMed DOI PMC
Šabacká P., Maxa J., Bayer R., Vyroubal P., Binar T. Slip Flow Analysis in an Experimental Chamber Simulating Differential Pumping in an Environmental Scanning Electron Microscope. Sensors. 2022;22:9033. doi: 10.3390/s22239033. PubMed DOI PMC
Šabacká P., Neděla V., Maxa J., Bayer R. Application of Prandtl’s Theory in the Design of an Experimental Chamber for Static Pressure Measurements. Sensors. 2021;21:6849. doi: 10.3390/s21206849. PubMed DOI PMC
Li X., Wu Y., Shan X., Zhang H., Chen Y. Estimation of Airflow Parameters for Tail-Sitter UAV through a 5-Hole Probe Based on an ANN. Sensors. 2023;23:417. doi: 10.3390/s23010417. PubMed DOI PMC
Maxa J., Hlavatá P., Vyroubal P. Analysis of impact of conic aperture in differentially pumped chamber. Adv. Mil. Technol. 2019;14:151–161. doi: 10.3849/aimt.01268. DOI
Šabacká P., Maxa J., Maxová A. Mathematical and Physical Analysis of the Effect of Conical and Detached Shock Waves at the Tip of a Static Probe in an Experimental Chamber. ECS Trans. 2020;105:627–635. doi: 10.1149/10501.0627ecst. DOI
Bayer R., Maxa J., Šabacká P. Energy Harvesting Using Thermocouple and Compressed Air. Sensors. 2021;21:6031. doi: 10.3390/s21186031. PubMed DOI PMC
Danilatos G., Rattenberger J., Dracopoulos V. Beam transfer characteristics of a commercial environmental SEM and a low vacuum SEM. J. Microsc. 2011;242:166–180. doi: 10.1111/j.1365-2818.2010.03455.x. PubMed DOI
Salga J., Hoření B. Tabulky Proudění Plynu. UNOB; Brno, Czech Republic: 1997.
Ansys Fluent Theory Guide [online] [(accessed on 21 October 2022)]. Available online: www.ansys.com.
Uruba V. Turbulence, Skriptum. ČVUT v Praze, Fakulta strojní; Praha, Czech Republic: 2009. 141p
Kozoubková M., Blejchař T., Bojko M. Modelování Přenosu Tepla, Hmoty a Hybnosti, Skriptum. Vysoká škola báňská—Technická univerzita Ostrava; Ostrava, Czech Republic: 2011.
Drábková S. Mechanika Tekutin, Skriptum. Vysoká škola báňská—Technická univerzita Ostrava; Ostrava, Czech Republic: 2007.