Comparative Analysis of Supersonic Flow in Atmospheric and Low Pressure in the Region of Shock Waves Creation for Electron Microscopy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
38139611
PubMed Central
PMC10747329
DOI
10.3390/s23249765
PII: s23249765
Knihovny.cz E-zdroje
- Klíčová slova
- Ansys Fluent, ESEM, critical flow, nozzle, one-dimensional flow theory, pressure sensors, sensing techniques for low pressures, temperature sensors,
- Publikační typ
- časopisecké články MeSH
This paper presents mathematical-physics analyses in the field of the influence of inserted sensors on the supersonic flow behind the nozzle. It evaluates differences in the flow in the area of atmospheric pressure and low pressure on the boundary of continuum mechanics. To analyze the formation of detached and conical shock waves and their distinct characteristics in atmospheric pressure and low pressure on the boundary of continuum mechanics, we conduct comparative analyses using two types of inserted sensors: flat end and tip. These analyses were performed in two variants, considering pressure ratios of 10:1 both in front of and behind the nozzle. The first variant involved using atmospheric pressure in the chamber in front of the nozzle. The second type of analysis was conducted with a pressure of 10,000 Pa in front of the nozzle. While this represents a low pressure at the boundary of continuum mechanics, it remains above the critical limit of 113 Pa. This deliberate choice was made as it falls within the team's research focus on low-pressure regions. Although it is situated at the boundary of continuum mechanics, it is intentionally within a pressure range where the viscosity values are not yet dependent on pressure. In these variants, the nature of the flow was investigated concerning the ratio of inertial and viscous flow forces under atmospheric pressure conditions, and it was compared with flow conditions at low pressure. In the low-pressure scenario, the ratio of inertial and viscous flow forces led to a significant reduction in the value of inertial forces. The results showed an altered flow character, characterized by a reduced tendency for the formation of cross-oblique shockwaves within the nozzle itself and the emergence of shockwaves with increased thickness. This increased thickness is attributed to viscous forces inhibiting the thickening of the shockwave itself. This altered flow character may have implications, such as influencing temperature sensing with a tipped sensor. The shockwave area may form in a very confined space in front of the tip, potentially impacting the results. Additionally, due to reduced inertial forces, the cone shock wave's angle is a few degrees larger than theoretical predictions, and there is no tilting due to lower inertial forces. These analyses serve as the basis for upcoming experiments in the experimental chamber designed specifically for investigations in the given region of low pressures at the boundary of continuum mechanics. The objective, in combination with mathematical-physics analyses, is to determine changes within this region of the continuum mechanics boundary where inertial forces are markedly lower than in the atmosphere but remain under the influence of unreduced viscosity.
Zobrazit více v PubMed
Elaichi T., Zebbiche T. Stagnation temperature effect on the conical shock with application for air. Chin. J. Aeronaut. 2018;31:672–697. doi: 10.1016/j.cja.2018.02.009. DOI
Drexler P., Čáp M., Fiala P., Steinbauer M., Kadlec R., Kaška M., Kočiš L. A Sensor System for Detecting and Localizing Partial Discharges in Power Transformers with Improved Immunity to Interferences. Sensors. 2019;19:923. doi: 10.3390/s19040923. PubMed DOI PMC
Fiala P., Sadek V., Dohnal P., Bachorec T. Basic experiments with model of inductive flowmeter. Prog. Electromagn. Res. Symp. 2008;2:1044–1048.
Chue S.H. Pressure probes for fluid measurement. Prog. Aerosp. Sci. 1975;16:147–223. doi: 10.1016/0376-0421(75)90014-7. DOI
Moran M., Shapiro H. Fundamentals of Engineering Thermodynamics. 3rd ed. John Wiley & Sons, Inc.; New York, NY, USA: 1996.
Wang M., Zeng L., Zhao C., Sun S., Yang Y. Aerothermoelastic Analysis of Conical Shell in Supersonic Flow. Appl. Sci. 2023;13:4850. doi: 10.3390/app13084850. DOI
Aabid A., Khan S.A., Baig M. A Critical Review of Supersonic Flow Control for High-Speed Applications. Appl. Sci. 2021;11:6899. doi: 10.3390/app11156899. DOI
Dong W., Yao L., Luo W. Numerical Simulation of Flow Field of Submerged Angular Cavitation Nozzle. Appl. Sci. 2023;13:613. doi: 10.3390/app13010613. DOI
Forster R., Kirner C., Schein J. Plasma Expansion Characterization of a Vacuum Arc Thruster with Stereo Imaging. Appl. Sci. 2023;13:2788. doi: 10.3390/app13052788. DOI
Danilatos G.D. Velocity and ejector-jet assisted differential pumping: Novel design stages for environmental SEM. Micron. 2012;43:600–611. doi: 10.1016/j.micron.2011.10.023. DOI
Maxa J., Neděla V., Šabacká P., Binar T. Impact of Supersonic Flow in Scintillator Detector Apertures on the Resulting Pumping Effect of the Vacuum Chambers. Sensors. 2023;23:4861. doi: 10.3390/s23104861. PubMed DOI PMC
Danilatos G.D., Rattenberger J., Dracopoulos V. Beam transfer characteristics of a commercial environmental SEM and a low vacuum SEM. J. Microsc. 2010;242:166–180. doi: 10.1111/j.1365-2818.2010.03455.x. PubMed DOI
Danilatos G.D. Figure of merit for environmental SEM and its implications. J. Microsc. 2011;244:159–169. doi: 10.1111/j.1365-2818.2011.03521.x. PubMed DOI
Danilatos G.D. Optimum beam transfer in the environmental scanning electron microscope. J. Microsc. 2009;234:26–37. doi: 10.1111/j.1365-2818.2009.03148.x. PubMed DOI
Dordevic B., Neděla V., Tihlaříková E., Trojan V., Havel L. Effects of copper and arsenic stress on the development of Norway spruce somatic embryos and their visualization with the environmental scanning electron microscope. New Biotechnol. 2019;48:35–43. doi: 10.1016/j.nbt.2018.05.005. PubMed DOI
Neděla V., Konvalina I., Lencová B., Zlámal J. Comparison of calculated, simulated and measured signal amplification in variable pressure SEM. Nucl. Instrum. Methods Phys. Res. Sect. A. 2011;645:79–83. doi: 10.1016/j.nima.2010.12.200. DOI
Ritscher A., Schmetterer C., Ipser H. Pressure dependence of the tin–phosphorus phase diagram. Monatshefte Chem.-Chem. Mon. 2012;143:1593–1602. doi: 10.1007/s00706-012-0861-y. DOI
Stelate A., Tihlaříková E., Schwarzerová K., Neděla V., Petrášek J. Correlative Light-Environmental Scanning Electron Microscopy of Plasma Membrane Efflux Carriers of Plant Hormone Auxin. Biomolecules. 2021;11:1407. doi: 10.3390/biom11101407. PubMed DOI PMC
Vlašínová H., Neděla V., Dordevic B., Havel J. Bottlenecks in bog pine multiplication by somatic embryogenesis and their visualization with the environmental scanning electron microscope. Protoplasma. 2017;254:1487–1497. doi: 10.1007/s00709-016-1036-1. PubMed DOI
Schenkmayerová A., Bučko M., Gemeiner P., Treľová D., Lacík I., Chorvát D., Jr., Ačai P., Polakovič M., Lipták L., Rebroš M., et al. Physical and Bioengineering Properties of Polyvinyl Alcohol Lens-Shaped Particles Versus Spherical Polyelectrolyte Complex Microcapsules as Immobilisation Matrices for a Whole-Cell Baeyer–Villiger Monooxygenase. Appl. Biochem. Biotechnol. 2014;174:1834–1849. doi: 10.1007/s12010-014-1174-x. PubMed DOI
Krajčovič T., Bučko M., Vikartovská A., Lacík I., Uhelská L., Chorvát D., Neděla V., Tihlaříková E., Gericke M., Heinze T., et al. Polyelectrolyte Complex Beads by Novel Two-Step Process for Improved Performance of Viable Whole-Cell Baeyer-Villiger Monoxygenase by Immobilization. Catalysts. 2017;7:353–364. doi: 10.3390/catal7110353. DOI
Neděla V. Methods for Additive Hydration Allowing Observation of Fully Hydrated State of Wet Samples in Environmental SEM. Microsc. Res. Tech. 2007;70:95–100. doi: 10.1002/jemt.20390. PubMed DOI
Jirák J., Neděla V., Černoch P., Čudek P., Runštuk J. Scintillation SE detector for variable pressure scanning electron microscopes. J. Microsc. 2010;239:233–238. doi: 10.1111/j.1365-2818.2010.03377.x. PubMed DOI
Šabacká P., Maxa J., Bayer R., Vyroubal P., Binar T. Slip Flow Analysis in an Experimental Chamber Simulating Differential Pumping in an Environmental Scanning Electron Microscope. Sensors. 2022;22:9033. doi: 10.3390/s22239033. PubMed DOI PMC
Zhang B., Yi S., Zhao Y., Yang R., He L., Lu X. Hypervelocity imperfect gas nozzle design with shared wave-elimination contour. Phys. Fluids. 2023;35:086113. doi: 10.1063/5.0159468. DOI
Viskozita Plynů. [(accessed on 11 December 2021)]. Available online: https://physics.mff.cuni.cz/kfpp/skripta/kurz_fyziky_pro_DS/display.php/molekul/6_4.
Daněk M. Aerodynamika a Mechanika Letu. VVLŠ SNP; Košice, Slovakia: 1990. p. 83.
Chungil L., Yuta O., Takayuki N., Taku N. Super-resolution of time-resolved three-dimensional density fields of the B mode in an underexpanded screeching jet. Phys. Fluids. 2023;35:065128. doi: 10.1063/5.0149809. DOI
Šabacká P., Neděla V., Maxa J., Bayer R. Application of Prandtl’s Theory in the Design of an Experimental Chamber for Static Pressure Measurements. Sensors. 2021;21:6849. doi: 10.3390/s21206849. PubMed DOI PMC
Liu Q., Feng X.-B. Numerical Modelling of Microchannel Gas Flows in the Transition Flow Regime Using the Cascaded Lattice Boltzmann Method. Entropy. 2020;22:41. doi: 10.3390/e22010041. PubMed DOI PMC
Wang G., Chen L., Guan B., Zhang Y., Zhu L. Numerical investigation on thrust characteristics of an annular expansion–deflection nozzle. Phys. Fluids. 2023;35:056119. doi: 10.1063/5.0150129. DOI
Xue Z., Zhou L., Liu D. Accurate Numerical Modeling for 1D Open-Channel Flow with Varying Topography. Water. 2023;15:2893. doi: 10.3390/w15162893. DOI
Thevenin D., Janiga D. Optimization and Computational Fluid Dynamics. Springer; Berlin/Heidelberg, Germany: 2008.
Baehr H. Thermodynamik. 14th ed. Springer; Berlin/Heidelberg, Germany: 2009.
Ansys Fluent Theory Guide. [(accessed on 21 October 2022)]. Available online: www.ansys.com.
Chorin A.J. Numerical solution of navier-stokes equations. Math. Comput. 1968;22:745–762. doi: 10.1090/S0025-5718-1968-0242392-2. DOI
Liou M.S. A sequel to AUSM: AUSM+ J. Comput. Phys. 1996;129:364–382. doi: 10.1006/jcph.1996.0256. DOI
Barth T., Jespersen D. The design and application of upwind schemes on unstructured meshes; Proceedings of the 27th Aerospace Sciences Meeting; Reno, NV, USA. 9–12 January 1989.
Maxa J., Hlavatá P., Vyroubal P. Using the Ideal and Real Gas Model for the Mathematical—Physics Analysis of the Experimental Chambre. ECS Trans. 2018;87:377–387. doi: 10.1149/08701.0377ecst. DOI
Gennari S., Maglia F., Anselmi-Tamburini U., Spinolo G. SHS of NbSi2: A Comparison Between Experiments and Simulations. Monatsh. Chem. 2005;136:1871–1875. doi: 10.1007/s00706-005-0386-8. DOI
Xiao L., Hao X., Lei D., Tiezhi S. Flow structure and parameter evaluation of conical convergent–divergent nozzle supersonic jet flows. Phys. Fluids. 2023;35:066109.
Mali A.K., Jana T., Kaushik M., Mishra D.P. Influences of semi-circular, square, and triangular grooves on mixing behavior of an axisymmetric supersonic jet. Phys. Fluids. 2023;35:046108. doi: 10.1063/5.0146672. DOI
Karnam A., Saleem M., Gutmark E. Influence of nozzle geometry on screech instability closure. Phys. Fluids. 2023;35:086119. doi: 10.1063/5.0161032. DOI
Wang G., Zhou B., Guan B., Yang H. Numerical investigation on expansion–deflection nozzle flow during an ascending–descending trajectory. Phys. Fluids. 2023;35:086111. doi: 10.1063/5.0157607. DOI
Rathakrishnan E. Corrugation geometry effect on jet mixing. Phys. Fluids. 2023;35:056102. doi: 10.1063/5.0149156. DOI
Salga J., Hoření B. Tabulky Proudění Plynu. UNOB; Brno, Czech Republic: 1997.
Yadav M., Yadav R.S., Wang C. Lattice Boltzmann simulations of flow inside a converging and diverging nozzle with the insertion of single and multiple circular cylinders. Phys. Fluids. 2023;35:084110. doi: 10.1063/5.0157903. DOI
Dejč M.J. Technická Dynamika Plynů. SNTL; Praha, Czech Republic: 1967.
[(accessed on 12 December 2002)]. Available online: https://www.efunda.com/designstandards/sensors/pitot_tubes/pitot_tubes_theory.cfm.
Uruba V. Metody Analýzy Signálů Při Studio Nestacionárních Jevů v Proudících Tekutinách. ČVUT; Praha, Czech Republic: 2006. p. 58.
Maxová A., Maxa J., Šabacká P. The impact of pumping velocity on temperature running in chambers of experimental system. ECS Trans. 2020;99:317–323. doi: 10.1149/09901.0317ecst. DOI
Breyer D.W., Pankhurst R.C. Pressure-Probe Methods for Determining Windd Speed and Flow Direction. National Physical Laboratory, Her Majesty´s Stationery Office; London, UK: 1971.
[(accessed on 11 December 2021)]; Available online: https://www.grc.nasa.gov/www/k-12/airplane/wdgflow.html.
Maxa J., Hlavatá P., Vyroubal P. Analysis of impact of conic aperture in differentially pumped chamber. Adv. Millitary Technol. 2019;14:151–161. doi: 10.3849/aimt.01268. DOI
Hlavatá P., Maxa J., Vyroubal P. Analysis of pitot tube static probe angle in the experimental chamber conditions. ESC Trans. 2018;87:369–375. doi: 10.1149/08701.0369ecst. DOI
Škorpík J. Proudění Plynů a Par Tryskami, Transformační Technologie. Pokračující Zdroj; Brno, Czech Republic: 2006.