Effect of the preparation of lime putties on their properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29222495
PubMed Central
PMC5722907
DOI
10.1038/s41598-017-17527-3
PII: 10.1038/s41598-017-17527-3
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In the study of lime as the basic component of historical mortars and plasters, four lime putties prepared from various kinds of lime of various granulometry and by various ways of preparation were evaluated. The rheological properties and micro-morphologic changes, growing of calcite crystals, and rate of carbonation were monitored. The lime putty prepared from lump lime achieves the best rheological properties, yield stress 214.7 Pa and plastic viscosity 2.6 Pa·s. The suitability of this lime putty was checked by testing the development of calcium hydroxide and calcite crystals using scanning electron microscopy and environmental scanning electron microscopy. The disordered crystals of calcium hydroxide exhibit better carbonation resulting in the large crystals of calcite; therefore, the mortar prepared from the lump lime has the highest flexural strength and compressive strength 0.8/2.5 MPa, its carbonation is the fastest and exhibits the longest durability. Also, thanks to the micro-morphological characterization of samples in their native state by means of environmental scanning electron microscopy, the new way of lime putty preparation by mixing was proven. The preparation consists in the mechanical crash of the lime particles immediately after hydration. This enables the properties of putty prepared from lump lime to be nearly reached.
Lhoist Lime kiln Čertovy schody a s Tmaň 267 21 Czech Republic
The Czech Academy of Science Institute of Scientific Instruments Brno 612 64 Czech Republic
Zobrazit více v PubMed
Kotík, P. et al. Lime, first ed., Society of Technology of Architectural Heritage, Prague, 2001 (76 pages), ISBN 80-902668-8-6 (In Czech).
Kemperl J, Maček J. Precipitation of calcium carbonate from hydrated lime of variable reactivity, granulation and optical properties. J. Miner. Process. 2009;93:84–88. doi: 10.1016/j.minpro.2009.05.006. DOI
Commandré JM, Salvador S, Nzihou A. Reactivity of laboratory and industrial limes. Chem. Eng. Res. Design. 2007;85:473–480. doi: 10.1205/cherd06200. DOI
Chiaia B, Fantilli AP, Ventura G. A chemo-mechanical model of lime hydration in concrete structures. Constr. Build. Mater. 2012;29:308–315. doi: 10.1016/j.conbuildmat.2011.10.013. DOI
Potgieter HJ, Potgieter SS, Moja SJ, Maluba-bafubiandi A. An empirical study of factors influencing lime slaking. Part I: production and storage conditions. Miner. Eng. 2002;15:201–203. doi: 10.1016/S0892-6875(02)00008-0. DOI
Shi H, Zhao Y, Li W. Effects of temperature on the hydration characteristic of free lime. Cem. Concr. Res. 2002;32:789–793. doi: 10.1016/S0008-8846(02)00714-7. DOI
Giles DE, Ritchie IM, Xu BA. The kinetics of dissolution of slaked lime. Hydrometallurgy. 1993;32:119–128. doi: 10.1016/0304-386X(93)90061-H. DOI
Whittington BI. The chemistry of CaO and Ca(OH)2 relating to the Bayer process. Hydrometallurgy. 1996;43:13–35. doi: 10.1016/0304-386X(96)00009-6. DOI
Moropoulou A, Bakolas A, Aggelakopoulou E. The effects of limestone characteristics and calcination temperature to the reactivity of the quicklime. Cem. Concr. Res. 2001;31:633–639. doi: 10.1016/S0008-8846(00)00490-7. DOI
Rosell JR, Haurie L, Navarro A, Cantalapiedra IR. Influence of the traditional slaking process on the lime putty characteristics. Constr. Build. Mater. 2014;55:423–430. doi: 10.1016/j.conbuildmat.2014.01.007. DOI
Rodrigues-Navarro C, Hansen E, Ginell WS. Calcium hydroxide crystal evolution upon aging of lime putty. J. Am. Ceram. Soc. 1998;81:3032–3034. doi: 10.1111/j.1151-2916.1998.tb02735.x. DOI
Cardoso FA, Fernandes HC, Pileggi RF, Cincotto MA, John VM. Carbide lime and industrial hydrated lime characterization. Powder Technol. 2009;195:143–149. doi: 10.1016/j.powtec.2009.05.017. DOI
Cizer Ő, Van Balen K, Elsen J, Van Gemert D. Real-time investigation of reaction rate and mineral phase modifications of lime carbonation. Constr. Build. Mater. 2012;35:741–751. doi: 10.1016/j.conbuildmat.2012.04.036. DOI
Romagnoli M, Gualtieri ML, Hanuskova M, Rattazzi A, Polodoro C. Effect of drying method on the specific surface area of hydrated lime: A statistical approach. Powder Technol. 2013;246:504–5010. doi: 10.1016/j.powtec.2013.06.009. DOI
Mascolo G, Mascolo MC, Vitale A, Marino O. Microstructure evolution of lime putty upon aging. J. Cryst. Growth. 2010;312:2363–2368. doi: 10.1016/j.jcrysgro.2010.05.020. DOI
Atzeni C, Farci A, Floris D, Meloni P. Effect of aging on rheological properties of lime putty. J. Am. Ceram. Soc. 2004;87:1746–1766. doi: 10.1111/j.1551-2916.2004.01764.x. DOI
Ruiz-Agudo E, Rodriguez-Navarro C. Microstructure and Rheology of Lime Putty. Langmuir. 2010;26:3868–3877. doi: 10.1021/la903430z. PubMed DOI
Paiva H, Velosa A, Veiga R, Ferreira VM. Effect of maturation time on the fresh and hardened properties of an air lime mortar. Cem. Concr. Res. 2010;40:447–451. doi: 10.1016/j.cemconres.2009.09.016. DOI
Margalha G, Veiga R, de Brito J. Traditional methods of mortar preparation: The hot lime mix method. Cem. Concr. Compos. 2011;33:469–804. doi: 10.1016/j.cemconcomp.2011.05.008. DOI
Neděla V, Tihlaříková E, Hřib J. The low-temperature method for study of coniferous tissues in the environmental scanning electron microscope. Microscope Res. Tech. 2015;78:13–21. doi: 10.1002/jemt.22439. PubMed DOI
Schenkmayerová A, et al. Physical and bioengineering properties of polyvinyl alcohol lens-shaped particles versus spherical polyelectrolyte complex microcapsules as immobilisation matrices for a whole-cell baeyer–villiger monooxygenase. Appl. Biochem. Biotechnol. 2014;174:1834–1849. doi: 10.1007/s12010-014-1174-x. PubMed DOI
Medina C, Banfill PFG, Sánchez de Rojas MI, Frías M. Rheological and calorimetric behaviour of cements blended with containing ceramic sanitary ware and construction/demolition waste. Constr. Build. Mater. 2013;40:822–831. doi: 10.1016/j.conbuildmat.2012.11.112. DOI