Synthesis and Structure Optimization of Star Copolymers as Tunable Macromolecular Carriers for Minimal Immunogen Vaccine Delivery
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
39081220
PubMed Central
PMC11342300
DOI
10.1021/acs.bioconjchem.4c00273
Knihovny.cz E-zdroje
- MeSH
- dendrimery * chemie MeSH
- lidé MeSH
- myši MeSH
- nosiče léků chemie MeSH
- polyaminy MeSH
- polymery chemie MeSH
- vakcíny proti AIDS imunologie chemie aplikace a dávkování MeSH
- vakcíny imunologie chemie aplikace a dávkování MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dendrimery * MeSH
- nosiče léků MeSH
- Poly(amidoamine) MeSH Prohlížeč
- polyaminy MeSH
- polymery MeSH
- vakcíny proti AIDS MeSH
- vakcíny MeSH
Minimal immunogen vaccines are being developed to focus antibody responses against otherwise challenging targets, including human immunodeficiency virus (HIV), but multimerization of the minimal peptide immunogen on a carrier platform is required for activity. Star copolymers comprising multiple hydrophilic polymer chains ("arms") radiating from a central dendrimer unit ("core") were recently reported to be an effective platform for arraying minimal immunogens for inducing antibody responses in mice and primates. However, the impact of different parameters of the star copolymer (e.g., minimal immunogen density and hydrodynamic size) on antibody responses and the optimal synthetic route for controlling those parameters remains to be fully explored. We synthesized a library of star copolymers composed of poly[N-(2-hydroxypropyl)methacrylamide] hydrophilic arms extending from poly(amidoamine) dendrimer cores with the aim of identifying the optimal composition for use as minimal immunogen vaccines. Our results show that the length of the polymer arms has a crucial impact on the star copolymer hydrodynamic size and is precisely tunable over a range of 20-50 nm diameter, while the dendrimer generation affects the maximum number of arms (and therefore minimal immunogens) that can be attached to the surface of the dendrimer. In addition, high-resolution images of selected star copolymer taken by a custom-modified environmental scanning electron microscope enabled the acquisition of high-resolution images, providing new insights into the star copolymer structure. Finally, in vivo studies assessing a star copolymer vaccine comprising an HIV minimal immunogen showed the criticality of polymer arm length in promoting antibody responses and highlighting the importance of composition tunability to yield the desired biological effect.
Zobrazit více v PubMed
Ross T. M. Universal Influenza Vaccine Approaches Using Full-Length or Head-Only Hemagglutinin Proteins. J. Infect Dis 2019, 219, S57–S61. 10.1093/infdis/jiz004. PubMed DOI
Li Y.-D.; Chi W.-Y.; Su J.-H.; Ferrall L.; Hung C.-F.; Wu T.-C. Coronavirus vaccine development: from SARS and MERS to COVID-19. J. Biomed. Sci. 2020, 27, 104.10.1186/s12929-020-00695-2. PubMed DOI PMC
Plotkin S. A. Correlates of Protection Induced by Vaccination. Clin Vaccine Immunol 2010, 17, 1055–1065. 10.1128/CVI.00131-10. PubMed DOI PMC
de Taeye S. W.; de la Peña A. T.; Vecchione A.; Scutigliani E.; Sliepen K.; Burger J. A.; van der Woude P.; Schorcht A.; Schermer E. E.; van Gils M. J.; et al. Stabilization of the gp120 V3 loop through hydrophobic interactions reduces the immunodominant V3-directed non-neutralizing response to HIV-1 envelope trimers. J. Biol. Chem. 2018, 293, 1688–1701. 10.1074/jbc.RA117.000709. PubMed DOI PMC
Arvin A. M.; Fink K.; Schmid M. A.; Cathcart A.; Spreafico R.; Havenar-Daughton C.; Lanzavecchia A.; Corti D.; Virgin H. W. A perspective on potential antibody-dependent enhancement of SARS-CoV-2. Nature 2020, 584, 353–363. 10.1038/s41586-020-2538-8. PubMed DOI
Kozak M.; Hu J. The Integrated Consideration of Vaccine Platforms, Adjuvants, and Delivery Routes for Successful Vaccine Development. Vaccines 2023, 11, 695.10.3390/vaccines11030695. PubMed DOI PMC
Pollard A. J.; Bijker E. M. A guide to vaccinology: from basic principles to new developments. Nat. Rev. Immunol 2021, 21, 83–100. 10.1038/s41577-020-00479-7. PubMed DOI PMC
Irvine D. J.; Read B. J. Shaping humoral immunity to vaccines through antigen-displaying nanoparticles. Curr. Opin Immunol 2020, 65, 1–6. 10.1016/j.coi.2020.01.007. PubMed DOI PMC
Purcell A. W.; McCluskey J.; Rossjohn J. More than one reason to rethink the use of peptides in vaccine design. Nat. Rev. Drug Discovery 2007, 6, 404–414. 10.1038/nrd2224. PubMed DOI
Malonis R. J.; Lai J. R.; Vergnolle O. Peptide-Based Vaccines: Current Progress and Future Challenges. Chem. Rev. 2020, 120, 3210–3229. 10.1021/acs.chemrev.9b00472. PubMed DOI PMC
Lynn G. M.; Laga R.; Darrah P. A.; Ishizuka A. S.; Balaci A. J.; Dulcey A. E.; Pechar M.; Pola R.; Gerner M. Y.; Yamamoto A.; et al. In vivo characterization of the physicochemical properties of polymer-linked TLR agonists that enhance vaccine immunogenicity. Nat. Biotechnol. 2015, 33, 1201.10.1038/nbt.3371. PubMed DOI PMC
Dintzis H. M.; Dintzis R. Z.; Vogelstein B. Molecular determinants of immunogenicity: the immunon model of immune response. Proc. Natl. Acad. Sci. U. S. A. 1976, 73, 3671–5. 10.1073/pnas.73.10.3671. PubMed DOI PMC
Bachmann M. F.; Jennings G. T. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nature Reviews Immunology 2010, 10, 787–796. 10.1038/nri2868. PubMed DOI
Brito L. A.; O’Hagan D. T. Designing and building the next generation of improved vaccine adjuvants. J. Controlled Release 2014, 190, 563–579. 10.1016/j.jconrel.2014.06.027. PubMed DOI
Irvine D. J.; Hanson M. C.; Rakhra K.; Tokatlian T. Synthetic Nanoparticles for Vaccines and Immunotherapy. Chem. Rev. 2015, 115, 11109–11146. 10.1021/acs.chemrev.5b00109. PubMed DOI PMC
Morales-Hernández S.; Ugidos-Damboriena N.; López-Sagaseta J. Self-Assembling Protein Nanoparticles in the Design of Vaccines: 2022 Update. Vaccines 2022, 10, 1447.10.3390/vaccines10091447. PubMed DOI PMC
Lamontagne F.; Khatri V.; St-Louis P.; Bourgault S.; Archambault D. Vaccination Strategies Based on Bacterial Self-Assembling Proteins as Antigen Delivery Nanoscaffolds. Vaccines 2022, 10, 1920.10.3390/vaccines10111920. PubMed DOI PMC
Montégut L.; Chen H.; Bravo-San Pedro J. M.; Motiño O.; Martins I.; Kroemer G. Immunization of mice with the self-peptide ACBP coupled to keyhole limpet hemocyanin. Star Protoc 2022, 3, 10109510.1016/j.xpro.2021.101095. PubMed DOI PMC
Doucet M.; El-Turabi A.; Zabel F.; Hunn B. H. M.; Bengoa-Vergniory N.; Cioroch M.; Ramm M.; Smith A. M.; Gomes A. C.; Cabral de Miranda G.; Wade-Martins R.; Bachmann M. F.; Kahle P. J.; et al. Preclinical development of a vaccine against oligomeric alpha-synuclein based on virus-like particles. PLoS One 2017, 12, e018184410.1371/journal.pone.0181844. PubMed DOI PMC
Kanekiyo M.; Wei C. J.; Yassine H. M.; McTamney P. M.; Boyington J. C.; Whittle J. R. R.; Rao S. S.; Kong W. P.; Wang L. S.; Nabel G. J. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature 2013, 499, 102.10.1038/nature12202. PubMed DOI PMC
Alam S. M.; Aussedat B.; Vohra Y.; Meyerhoff R. R.; Cale E. M.; Walkowicz W. E.; Radakovich N. A.; Anasti K.; Armand L.; Parks R.; Sutherland L.; Scearce R.; Joyce M. G.; Pancera M.; Druz A.; Georgiev I. S.; Von Holle T.; Eaton A.; Fox C.; Reed S. G.; Louder M.; Bailer R. T.; Morris L.; Abdool-Karim S. S.; Cohen M.; Liao H. X.; Montefiori D. C.; Park P. K.; Fernández-Tejada A.; Wiehe K.; Santra S.; Kepler T. B.; Saunders K. O.; Sodroski J.; Kwong P. D.; Mascola J. R.; Bonsignori M.; Moody M. A.; Danishefsky S.; Haynes B. F.; et al. Mimicry of an HIV broadly neutralizing antibody epitope with a synthetic glycopeptide. Sci. Transl Med. 2017, 9, eaai752110.1126/scitranslmed.aai7521. PubMed DOI PMC
Jefferis R. Posttranslational Modifications and the Immunogenicity of Biotherapeutics. J. Immunol. Res. 2016, 2016, 535827210.1155/2016/5358272. PubMed DOI PMC
Li W.; Li F.; Zhang X.; Lin H.-K.; Xu C. Insights into the post-translational modification and its emerging role in shaping the tumor microenvironment. Signal Transduction Targeted Ther. 2021, 6, 422.10.1038/s41392-021-00825-8. PubMed DOI PMC
Viegas C.; Seck F.; Fonte P. An insight on lipid nanoparticles for therapeutic proteins delivery. J. Drug Delivery Sci. Technol. 2022, 77, 10383910.1016/j.jddst.2022.103839. DOI
Gouveia M. G.; Wesseler J. P.; Ramaekers J.; Weder C.; Scholten P. B. V.; Bruns N. Polymersome-based protein drug delivery – quo vadis?. Chem. Soc. Rev. 2023, 52, 728–778. 10.1039/D2CS00106C. PubMed DOI PMC
Scaletti F.; Hardie J.; Lee Y. W.; Luther D. C.; Ray M.; Rotello V. M. Protein delivery into cells using inorganic nanoparticle-protein supramolecular assemblies. Chem. Soc. Rev. 2018, 47, 3421–3432. 10.1039/C8CS00008E. PubMed DOI PMC
Skoulas D.; Fattah S.; Wang D.; Cryan S.; Heise A. Systematic Study of Enzymatic Degradation and Plasmid DNA Complexation of Mucus Penetrating Star-Shaped Lysine/Sarcosine Polypept(o)ides with Different Block Arrangements. Macromol. Biosci. 2022, 22, 220017510.1002/mabi.202200175. PubMed DOI
England R. M.; Moss J. I.; Gunnarsson A.; Parker J. S.; Ashford M. B. Synthesis and Characterization of Dendrimer-Based Polysarcosine Star Polymers: Well-Defined, Versatile Platforms Designed for Drug-Delivery Applications. Biomacromolecules 2020, 21, 3332–3341. 10.1021/acs.biomac.0c00768. PubMed DOI
Mehta D.; Leong N.; McLeod V. M.; Kelly B. D.; Pathak R.; Owen D. J.; Porter C. J. H.; Kaminskas L. M. Reducing Dendrimer Generation and PEG Chain Length Increases Drug Release and Promotes Anticancer Activity of PEGylated Polylysine Dendrimers Conjugated with Doxorubicin via a Cathepsin-Cleavable Peptide Linker. Mol. Pharmaceut 2018, 15, 4568–4576. 10.1021/acs.molpharmaceut.8b00581. PubMed DOI
Chavoustie S. E.; Carter B. A.; Waldbaum A. S.; Donders G. G. G.; Peters K. H.; Schwebke J. R.; Paull J. R. A.; Price C. F.; Castellarnau A.; McCloud P.; et al. Two phase 3, double-blind, placebo-controlled studies of the efficacy and safety of Astodrimer 1% Gel for the treatment of bacterial vaginosis. Eur. J. Obstet Gynecol Reprod Biol. 2020, 245, 13–18. 10.1016/j.ejogrb.2019.11.032. PubMed DOI
Moscicki A. B.; Kaul R.; Ma Y.; Scott M. E.; Daud I. I.; Bukusi E. A.; Shiboski S.; Rebbapragada A.; Huibner S.; Cohen C. R. Measurement of mucosal biomarkers in a phase 1 trial of intravaginal 3% StarPharma LTD 7013 gel (VivaGel) to assess expanded safety. J. Acquir Immune Defic Syndr 2012, 59, 134–40. 10.1097/QAI.0b013e31823f2aeb. PubMed DOI PMC
Mignani S.; Shi X.; Rodrigues J.; Tomas H.; Karpus A.; Majoral J. P. First-in-class and best-in-class dendrimer nanoplatforms from concept to clinic: Lessons learned moving forward. Eur. J. Med. Chem. 2021, 219, 11345610.1016/j.ejmech.2021.113456. PubMed DOI
Francica J. R.; Laga R.; Lynn G. M.; Mužíková G.; Androvič L.; Aussedat B.; Walkowicz W. E.; Padhan K.; Ramirez-Valdez R. A.; Parks R.; Schmidt S. D.; Flynn B. J.; Tsybovsky Y.; Stewart-Jones G. B. E.; Saunders K. O.; Baharom F.; Petrovas C.; Haynes B. F.; Seder R. A.; Moon J. J.; et al. Star nanoparticles delivering HIV-1 peptide minimal immunogens elicit near-native envelope antibody responses in nonhuman primates. Plos Biol. 2019, 17, e300032810.1371/journal.pbio.3000328. PubMed DOI PMC
Tong W. Y.; Maira M.; Roychoudhury R.; Galan A.; Brahimi F.; Gilbert M.; Cunningham A. M.; Josephy S.; Pirvulescu I.; Moffett S.; et al. Vaccination with Tumor-Ganglioside Glycomimetics Activates a Selective Immunity that Affords Cancer Therapy. Cell Chem. Biol. 2019, 26, 1013.10.1016/j.chembiol.2019.03.018. PubMed DOI
Fera D.; Lee M. S.; Wiehe K.; Meyerhoff R. R.; Piai A.; Bonsignori M.; Aussedat B.; Walkowicz W. E.; Ton T.; Zhou J. O.; Danishefsky S.; Haynes B. F.; Harrison S. C.; et al. HIV envelope V3 region mimic embodies key features of a broadly neutralizing antibody lineage epitope. Nat. Commun. 2018, 9, 1111.10.1038/s41467-018-03565-6. PubMed DOI PMC
Williams W. B.; Meyerhoff R. R.; Edwards R. J.; Li H.; Manne K.; Nicely N. I.; Henderson R.; Zhou Y.; Janowska K.; Mansouri K.; et al. Fab-dimerized glycan-reactive antibodies are a structural category of natural antibodies. Cell 2021, 184, 2955.10.1016/j.cell.2021.04.042. PubMed DOI PMC
Manolova V.; Flace A.; Bauer M.; Schwarz K.; Saudan P.; Bachmann M. F. Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol. 2008, 38, 1404–1413. 10.1002/eji.200737984. PubMed DOI
Reddy S. T.; Rehor A.; Schmoekel H. G.; Hubbell J. A.; Swartz M. A. In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J. Controlled Release 2006, 112, 26–34. 10.1016/j.jconrel.2006.01.006. PubMed DOI
Stano A.; Nembrini C.; Swartz M. A.; Hubbell J. A.; Simeoni E. Nanoparticle size influences the magnitude and quality of mucosal immune responses after intranasal immunization. Vaccine 2012, 30, 7541–7546. 10.1016/j.vaccine.2012.10.050. PubMed DOI
Lyu Z.; Ding L.; Huang A. Y. T.; Kao C. L.; Peng L. Poly(amidoamine) dendrimers: covalent and supramolecular synthesis. Mater. Today Chem. 2019, 13, 34–48. 10.1016/j.mtchem.2019.04.004. DOI
Ulbrich K.; Subr V.; Strohalm J.; Plocová D.; Jelínková M.; Ríhová B. Polymeric drugs based on conjugates of synthetic and natural macromolecules I.: Synthesis and physico-chemical characterisation. J. Controlled Release 2000, 64, 63–79. 10.1016/S0168-3659(99)00141-8. PubMed DOI
Tao L.; Liu J. Q.; Xu J. T.; Davis T. P. Synthesis and bioactivity of poly(HPMA)-lysozyme conjugates: the use of novel thiazolidine-2-thione coupling chemistry. Org. Biomol Chem. 2009, 7, 3481–3485. 10.1039/b907061c. PubMed DOI
Subr V.; Kostka L.; Strohalm J.; Etrych T.; Ulbrich K. Synthesis of Well-Defined Semitelechelic Poly[N-(2-hydroxypropyl)methacrylamide] Polymers with Functional Group at the α-End of the Polymer Chain by RAFT Polymerization. Macromolecules 2013, 46, 2100–2108. 10.1021/ma400042u. DOI
Subr V.; Konák C.; Laga R.; Ulbrich K. Coating of DNA/poly(L-lysine) complexes by covalent attachment of poly[ N-(2-hydroxypropyl)methacrylamide]. Biomacromolecules 2006, 7, 122–130. 10.1021/bm050524x. PubMed DOI
Androvic L.; Woldrichová L.; Jozefjaková K.; Pechar M.; Lynn G. M.; Kanková D.; Malinová L.; Laga R. Cyclotriphosphazene-Based Star Copolymers as Structurally Tunable Nanocarriers with Programmable Biodegradability. Macromolecules 2021, 54, 3139–3157. 10.1021/acs.macromol.0c02889. DOI
Neděla V.; Tihlaříková E.; Maxa J.; Imrichová K.; Bučko M.; Gemeiner P. Simulation-based optimization of thermodynamic conditions in the ESEM for dynamical in-situ study of spherical polyelectrolyte complex particles in their native state. Ultramicroscopy 2020, 211, 11295410.1016/j.ultramic.2020.112954. PubMed DOI
Rimankova L.; Cernocka H.; Tihlarikova E.; Nedela V.; Ostatna V. Chronopotentiometric sensing of native, oligomeric, denatured and aggregated serum albumin at charged surfaces. Bioelectrochemistry 2022, 145, 10810010.1016/j.bioelechem.2022.108100. PubMed DOI
Lobaz V.; Liscakova V.; Sedlak F.; Musil D.; Petrova S. L.; Sedenkova I.; Panek J.; Kucka J.; Konefal R.; Tihlarikova; et al. Tuning polymer-blood and polymer-cytoplasm membrane interactions by manipulating the architecture of poly(2-oxazoline) triblock copolymers. Colloids Surf. B Biointerfaces 2023, 231, 11356410.1016/j.colsurfb.2023.113564. PubMed DOI
Tihlaříková E.; Neděla V.; Đorđević B. In-situ preparation of plant samples in ESEM for energy dispersive x-ray microanalysis and repetitive observation in SEM and ESEM. Sci. Rep-Uk 2019, 9, 2300.10.1038/s41598-019-38835-w. PubMed DOI PMC