Decellularized Pancreatic Tail as Matrix for Pancreatic Islet Transplantation into the Greater Omentum in Rats

. 2022 Sep 30 ; 13 (4) : . [epub] 20220930

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36278640

Grantová podpora
19-07661S Czech Science Foundation
22-25799S Czech Science Foundation
NU22-08-00286 Ministry of Health of the Czech Republic

Infusing pancreatic islets into the portal vein currently represents the preferred approach for islet transplantation, despite considerable loss of islet mass almost immediately after implantation. Therefore, approaches that obviate direct intravascular placement are urgently needed. A promising candidate for extrahepatic placement is the omentum. We aimed to develop an extracellular matrix skeleton from the native pancreas that could provide a microenvironment for islet survival in an omental flap. To that end, we compared different decellularization approaches, including perfusion through the pancreatic duct, gastric artery, portal vein, and a novel method through the splenic vein. Decellularized skeletons were compared for size, residual DNA content, protein composition, histology, electron microscopy, and MR imaging after repopulation with isolated islets. Compared to the other approaches, pancreatic perfusion via the splenic vein provided smaller extracellular matrix skeletons, which facilitated transplantation into the omentum, without compromising other requirements, such as the complete depletion of cellular components and the preservation of pancreatic extracellular proteins. Repeated MR imaging of iron-oxide-labeled pancreatic islets showed that islets maintained their position in vivo for 49 days. Advanced environmental scanning electron microscopy demonstrated that islets remained integrated with the pancreatic skeleton. This novel approach represents a proof-of-concept for long-term transplantation experiments.

Zobrazit více v PubMed

Choudhary P., Rickels M.R., Senior P.A., Vantyghem M.-C., Maffi P., Kay T.W., Keymeulen B., Inagaki N., Saudek F., Lehmann R., et al. Evidence-informed clinical practice recommendations for treatment of type 1 diabetes complicated by problematic hypoglycemia. Diabetes Care. 2015;38:1016–1029. doi: 10.2337/dc15-0090. PubMed DOI PMC

Berman D.M., Molano R.D., Fotino C., Ulissi U., Gimeno J., Mendez A.J., Kenyon N.M., Kenyon N.S., Andrews D.M., Ricordi C., et al. Bioengineering the Endocrine Pancreas: Intraomental Islet Transplantation Within a Biologic Resorbable Scaffold. Diabetes. 2016;65:1350–1361. doi: 10.2337/db15-1525. PubMed DOI PMC

Pileggi A., Molano R.D., Ricordi C., Zahr E., Collins J., Valdes R., Inverardi L. Reversal of diabetes by pancreatic islet transplantation into a subcutaneous, neovascularized device. Transplantation. 2006;81:1318–1324. doi: 10.1097/01.tp.0000203858.41105.88. PubMed DOI

Patikova A., Vojtiskova A., Fabryova E., Kosinova L., Heribanova A., Sticova E., Berkova Z., Hladikova Z., Kriz J. The optimal maturation of subcutaneous pouch can improve pancreatic islets engraftment in rat model. Transplantation. 2021;106:531–542. doi: 10.1097/TP.0000000000003844. PubMed DOI

Theocharis A.D., Skandalis S.S., Gialeli C., Karamanos N.K. Extracellular matrix structure. Adv. Drug Deliver. Rev. 2016;97:4–27. doi: 10.1016/j.addr.2015.11.001. PubMed DOI

Parnaud G., Hammar E., Ribaux P., Donath M.Y., Berney T., Halban P.A. Signaling pathways implicated in the stimulation of beta-cell proliferation by extracellular matrix. Mol. Endocrinol. 2009;23:1264–1271. doi: 10.1210/me.2009-0008. PubMed DOI PMC

Hammar E., Parnaud G., Bosco D., Perriraz N., Maedler K., Donath M., Rouiller D.G., Halban P.A. Extracellular matrix protects pancreatic beta-cells against apoptosis: Role of short- and long-term signaling pathways. Diabetes. 2004;53:2034–2041. doi: 10.2337/diabetes.53.8.2034. PubMed DOI

Crapo P.M., Gilbert T.W., Badylak S.F. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32:3233–3243. doi: 10.1016/j.biomaterials.2011.01.057. PubMed DOI PMC

Gilpin A., Yang Y. Decellularization Strategies for Regenerative Medicine: From Processing Techniques to Applications. Biomed Res. Int. 2017;2017:9831534. doi: 10.1155/2017/9831534. PubMed DOI PMC

Goh S.-K., Bertera S., Olsen P., Candiello J.E., Halfter W., Uechi G., Balasubramani M., Johnson S.A., Sicari B.M., Kollar E., et al. Perfusion-decellularized pancreas as a natural 3D scaffold for pancreatic tissue and whole organ engineering. Biomaterials. 2013;34:6760–6772. doi: 10.1016/j.biomaterials.2013.05.066. PubMed DOI PMC

Napierala H., Hillebrandt K.-H., Haep N., Tang P., Tintemann M., Gassner J., Noesser M., Everwien H., Seiffert N., Kluge M., et al. Engineering an endocrine Neo-Pancreas by repopulation of a decellularized rat pancreas with islets of Langerhans. Sci. Rep. 2017;7:41777. doi: 10.1038/srep41777. PubMed DOI PMC

Sackett S.D., Tremmel D., Ma F., Feeney A., Maguire R.M., Brown M.E., Zhou Y., Li X., O’Brien C., Li L., et al. Extracellular matrix scaffold and hydrogel derived from decellularized and delipidized human pancreas. Sci. Rep. 2018;8:1–16. doi: 10.1038/s41598-018-28857-1. PubMed DOI PMC

Keane T.J., Swinehart I.T., Badylak S.F. Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods. 2015;84:25–34. doi: 10.1016/j.ymeth.2015.03.005. PubMed DOI

Damodaran R.G., Vermette P. Decellularized pancreas as a native extracellular matrix scaffold for pancreatic islet seeding and culture. J. Tissue Eng. Regen. Med. 2018;12:1230–1237. doi: 10.1002/term.2655. PubMed DOI

Yu H., Chen Y., Kong H., He Q., Sun H., Bhugul P.A., Zhang Q., Chen B., Zhou M. The rat pancreatic body tail as a source of a novel extracellular matrix scaffold for endocrine pancreas bioengineering. J. Biol. Eng. 2018;12:6. doi: 10.1186/s13036-018-0096-5. PubMed DOI PMC

Ghorbani F., Ekhtiari M., Chaghervand B.M., Moradi L., Mohammadi B., Kajbafzadeh A.-M. Detection of the residual concentration of sodium dodecyl sulfate in the decellularized whole rabbit kidney extracellular matrix. Cell Tissue Bank. 2022;23:119–128. doi: 10.1007/s10561-021-09921-z. PubMed DOI

Guo Y., Wu C., Xu L., Xu Y., Xiaohong L., Hui Z., Jingjing L., Lu Y., Wang Z. Vascularization of pancreatic decellularized scaffold with endothelial progenitor cells. J. Artif. Organs. 2018;21:230–237. doi: 10.1007/s10047-018-1017-6. PubMed DOI

Peloso A., Urbani L., Cravedi P., Katari R., Maghsoudlou P., Fallas M.E.A., Sordi V., Citro A., Purroy C., Niu G., et al. The Human Pancreas as a Source of Protolerogenic Extracellular Matrix Scaffold for a New-generation Bioartificial Endocrine Pancreas. Ann. Surg. 2016;264:169–179. doi: 10.1097/SLA.0000000000001364. PubMed DOI PMC

Mirmalek-Sani S.-H., Orlando G., McQuilling J.P., Pareta R., Mack D.L., Salvatori M., Farney A.C., Stratta R.J., Atala A., Opara E.C., et al. Porcine pancreas extracellular matrix as a platform for endocrine pancreas bioengineering. Biomaterials. 2013;34:5488–5495. doi: 10.1016/j.biomaterials.2013.03.054. PubMed DOI PMC

Wang X., Li Y.-G., Du Y., Zhu J.-Y., Li Z. The Research of Acellular Pancreatic Bioscaffold as a Natural 3-Dimensional Platform In Vitro. Pancreas. 2018;47:1040–1049. doi: 10.1097/MPA.0000000000001123. PubMed DOI

Pellicciaro M., Vella I., Lanzoni G., Tisone G., Ricordi C. The greater omentum as a site for pancreatic islet transplantation. CellR4 Repair Replace. Regen. Reprogram. 2017;5:e2410. PubMed PMC

Berman D.M., O’Neil J.J., Coffey L.C.K., Chaffanjon P.C.J., Kenyon N.M., Ruiz P., Pileggi A., Ricordi C., Kenyon N.S. Long-term survival of nonhuman primate islets implanted in an omental pouch on a biodegradable scaffold. Am. J. Transplant. 2009;9:91–104. doi: 10.1111/j.1600-6143.2008.02489.x. PubMed DOI PMC

Hladíková Z., Voglová B., Pátíková A., Berková Z., Kříž J., Vojtíšková A., Leontovyč I., Jirák D., Saudek F. Bioluminescence Imaging In Vivo Confirms the Viability of Pancreatic Islets Transplanted into the Greater Omentum. Mol. Imaging Biol. 2021;23:639–649. doi: 10.1007/s11307-021-01588-y. PubMed DOI

Saudek F., Hladiková Z., Hagerf B., Nemetova L., Girman P., Kriz J., Marada T., Habart D., Berkova Z., Leontovyc I., et al. Transplantation of Pancreatic Islets Into the Omentum Using a Biocompatible Plasma-Thrombin Gel: First Experience at the Institute for Clinical and Experimental Medicine in Prague. Transplant. Proc. 2022;54:806–810. doi: 10.1016/j.transproceed.2021.11.037. PubMed DOI

Baidal D.A., Ricordi C., Berman D.M., Alvarez A., Padilla N., Ciancio G., Linetsky E., Pileggi A., Alejandro R. Bioengineering of an Intraabdominal Endocrine Pancreas. N. Engl. J. Med. 2017;376:1887–1889. doi: 10.1056/NEJMc1613959. PubMed DOI PMC

Kříž J. In: Rat Experimental Transplantation Surgery: A Practical Guide. Girman P., Kříž J., Balaz P., editors. Volume 1. Springer International Publishing AG; Cham, Switzerland: 2015. DOI

Stelate A., Tihlaříková E., Schwarzerová K., Neděla V., Petrášek J. Correlative Light-Environmental Scanning Electron Microscopy of Plasma Membrane Efflux Carriers of Plant Hormone Auxin. Biomolecules. 2021;11:1407. doi: 10.3390/biom11101407. PubMed DOI PMC

Nedela V., Tihlarikova E., Hrib J. The low-temperature method for study of coniferous tissues in the environmental scanning electron microscope. Microsc. Res. Tech. 2015;78:13–21. doi: 10.1002/jemt.22439. PubMed DOI

Tihlarikova E., Nedela V., Dordevic B. In-situ preparation of plant samples in ESEM for energy dispersive x-ray microanalysis and repetitive observation in SEM and ESEM. Sci. Rep. 2019;9:2300. doi: 10.1038/s41598-019-38835-w. PubMed DOI PMC

Neděla V., Tihlaříková E., Runštuk J., Hudec J. High-efficiency detector of secondary and backscattered electrons for low-dose imaging in the ESEM. Ultramicroscopy. 2018;184:1–11. doi: 10.1016/j.ultramic.2017.08.003. PubMed DOI

Damyar K., Farahmand V., Whaley D., Alexander M., Lakey J.R.T. An overview of current advancements in pancreatic islet transplantation into the omentum. Islets. 2021;13:115–120. doi: 10.1080/19382014.2021.1954459. PubMed DOI PMC

Cayabyab F., Nih L.R., Yoshihara E. Advances in Pancreatic Islet Transplantation Sites for the Treatment of Diabetes. Front. Endocrinol. (Lausanne) 2021;12:732431. doi: 10.3389/fendo.2021.732431. PubMed DOI PMC

Berkova Z., Jirak D., Zacharovova K., Kriz J., Lodererova A., Girman P., Koblas T., Dovolilova E., Vancova M., Hajek M., et al. Labeling of pancreatic islets with iron oxide nanoparticles for in vivo detection with magnetic resonance. Transplantation. 2008;85:155–159. doi: 10.1097/01.tp.0000297247.08627.ff. PubMed DOI

Zacharovová K., Berková Z., Jirák D., Herynek V., Vancová M., Dovolilová E., Saudek F. Processing of superparamagnetic iron contrast agent ferucarbotran in transplanted pancreatic islets. Contrast Media Mol. Imaging. 2012;7:485–493. doi: 10.1002/cmmi.1477. PubMed DOI

McGregor J.E., Staniewicz L.T.L., Guthrie S.E., Donald A.M. Environmental scanning electron microscopy in cell biology. Methods Mol. Biol. 2013;931:493–516. doi: 10.1007/978-1-62703-056-4_26. PubMed DOI

Lifson N., Lassa C.V., Dixit P.K. Relation between blood flow and morphology in islet organ of rat pancreas. Am. J. Physiol. Endocrinol. Metab. 1985;249:E43, E48. doi: 10.1152/ajpendo.1985.249.1.E43. PubMed DOI

Coronel M.M., Stabler C.L. Engineering a local microenvironment for pancreatic islet replacement. Curr. Opin. Biotechnol. 2013;24:900–908. doi: 10.1016/j.copbio.2013.05.004. PubMed DOI PMC

Bi H., Ye K., Jin S. Proteomic analysis of decellularized pancreatic matrix identifies collagen V as a critical regulator for islet organogenesis from human pluripotent stem cells. Biomaterials. 2020;233:119673. doi: 10.1016/j.biomaterials.2019.119673. PubMed DOI

Hashemi J., Barati G., Bibak B. Decellularized Matrix Bioscaffolds: Implementation of Native Microenvironment in Pancreatic Tissue Engineering. Pancreas. 2021;50:942–951. doi: 10.1097/MPA.0000000000001868. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace