Decellularized Pancreatic Tail as Matrix for Pancreatic Islet Transplantation into the Greater Omentum in Rats
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-07661S
Czech Science Foundation
22-25799S
Czech Science Foundation
NU22-08-00286
Ministry of Health of the Czech Republic
PubMed
36278640
PubMed Central
PMC9589982
DOI
10.3390/jfb13040171
PII: jfb13040171
Knihovny.cz E-zdroje
- Klíčová slova
- advanced environmental scanning electron microscopy, extracellular matrix skeletons, pancreas decellularization, splenic vein perfusion, transplantation into the omentum,
- Publikační typ
- časopisecké články MeSH
Infusing pancreatic islets into the portal vein currently represents the preferred approach for islet transplantation, despite considerable loss of islet mass almost immediately after implantation. Therefore, approaches that obviate direct intravascular placement are urgently needed. A promising candidate for extrahepatic placement is the omentum. We aimed to develop an extracellular matrix skeleton from the native pancreas that could provide a microenvironment for islet survival in an omental flap. To that end, we compared different decellularization approaches, including perfusion through the pancreatic duct, gastric artery, portal vein, and a novel method through the splenic vein. Decellularized skeletons were compared for size, residual DNA content, protein composition, histology, electron microscopy, and MR imaging after repopulation with isolated islets. Compared to the other approaches, pancreatic perfusion via the splenic vein provided smaller extracellular matrix skeletons, which facilitated transplantation into the omentum, without compromising other requirements, such as the complete depletion of cellular components and the preservation of pancreatic extracellular proteins. Repeated MR imaging of iron-oxide-labeled pancreatic islets showed that islets maintained their position in vivo for 49 days. Advanced environmental scanning electron microscopy demonstrated that islets remained integrated with the pancreatic skeleton. This novel approach represents a proof-of-concept for long-term transplantation experiments.
1st Faculty of Medicine Charles University 12108 Prague Czech Republic
Diabetes Center Institute for Clinical and Experimental Medicine 14021 Prague Czech Republic
Faculty of Health Studies Technical University of Liberec 46117 Liberec Czech Republic
Zobrazit více v PubMed
Choudhary P., Rickels M.R., Senior P.A., Vantyghem M.-C., Maffi P., Kay T.W., Keymeulen B., Inagaki N., Saudek F., Lehmann R., et al. Evidence-informed clinical practice recommendations for treatment of type 1 diabetes complicated by problematic hypoglycemia. Diabetes Care. 2015;38:1016–1029. doi: 10.2337/dc15-0090. PubMed DOI PMC
Berman D.M., Molano R.D., Fotino C., Ulissi U., Gimeno J., Mendez A.J., Kenyon N.M., Kenyon N.S., Andrews D.M., Ricordi C., et al. Bioengineering the Endocrine Pancreas: Intraomental Islet Transplantation Within a Biologic Resorbable Scaffold. Diabetes. 2016;65:1350–1361. doi: 10.2337/db15-1525. PubMed DOI PMC
Pileggi A., Molano R.D., Ricordi C., Zahr E., Collins J., Valdes R., Inverardi L. Reversal of diabetes by pancreatic islet transplantation into a subcutaneous, neovascularized device. Transplantation. 2006;81:1318–1324. doi: 10.1097/01.tp.0000203858.41105.88. PubMed DOI
Patikova A., Vojtiskova A., Fabryova E., Kosinova L., Heribanova A., Sticova E., Berkova Z., Hladikova Z., Kriz J. The optimal maturation of subcutaneous pouch can improve pancreatic islets engraftment in rat model. Transplantation. 2021;106:531–542. doi: 10.1097/TP.0000000000003844. PubMed DOI
Theocharis A.D., Skandalis S.S., Gialeli C., Karamanos N.K. Extracellular matrix structure. Adv. Drug Deliver. Rev. 2016;97:4–27. doi: 10.1016/j.addr.2015.11.001. PubMed DOI
Parnaud G., Hammar E., Ribaux P., Donath M.Y., Berney T., Halban P.A. Signaling pathways implicated in the stimulation of beta-cell proliferation by extracellular matrix. Mol. Endocrinol. 2009;23:1264–1271. doi: 10.1210/me.2009-0008. PubMed DOI PMC
Hammar E., Parnaud G., Bosco D., Perriraz N., Maedler K., Donath M., Rouiller D.G., Halban P.A. Extracellular matrix protects pancreatic beta-cells against apoptosis: Role of short- and long-term signaling pathways. Diabetes. 2004;53:2034–2041. doi: 10.2337/diabetes.53.8.2034. PubMed DOI
Crapo P.M., Gilbert T.W., Badylak S.F. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32:3233–3243. doi: 10.1016/j.biomaterials.2011.01.057. PubMed DOI PMC
Gilpin A., Yang Y. Decellularization Strategies for Regenerative Medicine: From Processing Techniques to Applications. Biomed Res. Int. 2017;2017:9831534. doi: 10.1155/2017/9831534. PubMed DOI PMC
Goh S.-K., Bertera S., Olsen P., Candiello J.E., Halfter W., Uechi G., Balasubramani M., Johnson S.A., Sicari B.M., Kollar E., et al. Perfusion-decellularized pancreas as a natural 3D scaffold for pancreatic tissue and whole organ engineering. Biomaterials. 2013;34:6760–6772. doi: 10.1016/j.biomaterials.2013.05.066. PubMed DOI PMC
Napierala H., Hillebrandt K.-H., Haep N., Tang P., Tintemann M., Gassner J., Noesser M., Everwien H., Seiffert N., Kluge M., et al. Engineering an endocrine Neo-Pancreas by repopulation of a decellularized rat pancreas with islets of Langerhans. Sci. Rep. 2017;7:41777. doi: 10.1038/srep41777. PubMed DOI PMC
Sackett S.D., Tremmel D., Ma F., Feeney A., Maguire R.M., Brown M.E., Zhou Y., Li X., O’Brien C., Li L., et al. Extracellular matrix scaffold and hydrogel derived from decellularized and delipidized human pancreas. Sci. Rep. 2018;8:1–16. doi: 10.1038/s41598-018-28857-1. PubMed DOI PMC
Keane T.J., Swinehart I.T., Badylak S.F. Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods. 2015;84:25–34. doi: 10.1016/j.ymeth.2015.03.005. PubMed DOI
Damodaran R.G., Vermette P. Decellularized pancreas as a native extracellular matrix scaffold for pancreatic islet seeding and culture. J. Tissue Eng. Regen. Med. 2018;12:1230–1237. doi: 10.1002/term.2655. PubMed DOI
Yu H., Chen Y., Kong H., He Q., Sun H., Bhugul P.A., Zhang Q., Chen B., Zhou M. The rat pancreatic body tail as a source of a novel extracellular matrix scaffold for endocrine pancreas bioengineering. J. Biol. Eng. 2018;12:6. doi: 10.1186/s13036-018-0096-5. PubMed DOI PMC
Ghorbani F., Ekhtiari M., Chaghervand B.M., Moradi L., Mohammadi B., Kajbafzadeh A.-M. Detection of the residual concentration of sodium dodecyl sulfate in the decellularized whole rabbit kidney extracellular matrix. Cell Tissue Bank. 2022;23:119–128. doi: 10.1007/s10561-021-09921-z. PubMed DOI
Guo Y., Wu C., Xu L., Xu Y., Xiaohong L., Hui Z., Jingjing L., Lu Y., Wang Z. Vascularization of pancreatic decellularized scaffold with endothelial progenitor cells. J. Artif. Organs. 2018;21:230–237. doi: 10.1007/s10047-018-1017-6. PubMed DOI
Peloso A., Urbani L., Cravedi P., Katari R., Maghsoudlou P., Fallas M.E.A., Sordi V., Citro A., Purroy C., Niu G., et al. The Human Pancreas as a Source of Protolerogenic Extracellular Matrix Scaffold for a New-generation Bioartificial Endocrine Pancreas. Ann. Surg. 2016;264:169–179. doi: 10.1097/SLA.0000000000001364. PubMed DOI PMC
Mirmalek-Sani S.-H., Orlando G., McQuilling J.P., Pareta R., Mack D.L., Salvatori M., Farney A.C., Stratta R.J., Atala A., Opara E.C., et al. Porcine pancreas extracellular matrix as a platform for endocrine pancreas bioengineering. Biomaterials. 2013;34:5488–5495. doi: 10.1016/j.biomaterials.2013.03.054. PubMed DOI PMC
Wang X., Li Y.-G., Du Y., Zhu J.-Y., Li Z. The Research of Acellular Pancreatic Bioscaffold as a Natural 3-Dimensional Platform In Vitro. Pancreas. 2018;47:1040–1049. doi: 10.1097/MPA.0000000000001123. PubMed DOI
Pellicciaro M., Vella I., Lanzoni G., Tisone G., Ricordi C. The greater omentum as a site for pancreatic islet transplantation. CellR4 Repair Replace. Regen. Reprogram. 2017;5:e2410. PubMed PMC
Berman D.M., O’Neil J.J., Coffey L.C.K., Chaffanjon P.C.J., Kenyon N.M., Ruiz P., Pileggi A., Ricordi C., Kenyon N.S. Long-term survival of nonhuman primate islets implanted in an omental pouch on a biodegradable scaffold. Am. J. Transplant. 2009;9:91–104. doi: 10.1111/j.1600-6143.2008.02489.x. PubMed DOI PMC
Hladíková Z., Voglová B., Pátíková A., Berková Z., Kříž J., Vojtíšková A., Leontovyč I., Jirák D., Saudek F. Bioluminescence Imaging In Vivo Confirms the Viability of Pancreatic Islets Transplanted into the Greater Omentum. Mol. Imaging Biol. 2021;23:639–649. doi: 10.1007/s11307-021-01588-y. PubMed DOI
Saudek F., Hladiková Z., Hagerf B., Nemetova L., Girman P., Kriz J., Marada T., Habart D., Berkova Z., Leontovyc I., et al. Transplantation of Pancreatic Islets Into the Omentum Using a Biocompatible Plasma-Thrombin Gel: First Experience at the Institute for Clinical and Experimental Medicine in Prague. Transplant. Proc. 2022;54:806–810. doi: 10.1016/j.transproceed.2021.11.037. PubMed DOI
Baidal D.A., Ricordi C., Berman D.M., Alvarez A., Padilla N., Ciancio G., Linetsky E., Pileggi A., Alejandro R. Bioengineering of an Intraabdominal Endocrine Pancreas. N. Engl. J. Med. 2017;376:1887–1889. doi: 10.1056/NEJMc1613959. PubMed DOI PMC
Kříž J. In: Rat Experimental Transplantation Surgery: A Practical Guide. Girman P., Kříž J., Balaz P., editors. Volume 1. Springer International Publishing AG; Cham, Switzerland: 2015. DOI
Stelate A., Tihlaříková E., Schwarzerová K., Neděla V., Petrášek J. Correlative Light-Environmental Scanning Electron Microscopy of Plasma Membrane Efflux Carriers of Plant Hormone Auxin. Biomolecules. 2021;11:1407. doi: 10.3390/biom11101407. PubMed DOI PMC
Nedela V., Tihlarikova E., Hrib J. The low-temperature method for study of coniferous tissues in the environmental scanning electron microscope. Microsc. Res. Tech. 2015;78:13–21. doi: 10.1002/jemt.22439. PubMed DOI
Tihlarikova E., Nedela V., Dordevic B. In-situ preparation of plant samples in ESEM for energy dispersive x-ray microanalysis and repetitive observation in SEM and ESEM. Sci. Rep. 2019;9:2300. doi: 10.1038/s41598-019-38835-w. PubMed DOI PMC
Neděla V., Tihlaříková E., Runštuk J., Hudec J. High-efficiency detector of secondary and backscattered electrons for low-dose imaging in the ESEM. Ultramicroscopy. 2018;184:1–11. doi: 10.1016/j.ultramic.2017.08.003. PubMed DOI
Damyar K., Farahmand V., Whaley D., Alexander M., Lakey J.R.T. An overview of current advancements in pancreatic islet transplantation into the omentum. Islets. 2021;13:115–120. doi: 10.1080/19382014.2021.1954459. PubMed DOI PMC
Cayabyab F., Nih L.R., Yoshihara E. Advances in Pancreatic Islet Transplantation Sites for the Treatment of Diabetes. Front. Endocrinol. (Lausanne) 2021;12:732431. doi: 10.3389/fendo.2021.732431. PubMed DOI PMC
Berkova Z., Jirak D., Zacharovova K., Kriz J., Lodererova A., Girman P., Koblas T., Dovolilova E., Vancova M., Hajek M., et al. Labeling of pancreatic islets with iron oxide nanoparticles for in vivo detection with magnetic resonance. Transplantation. 2008;85:155–159. doi: 10.1097/01.tp.0000297247.08627.ff. PubMed DOI
Zacharovová K., Berková Z., Jirák D., Herynek V., Vancová M., Dovolilová E., Saudek F. Processing of superparamagnetic iron contrast agent ferucarbotran in transplanted pancreatic islets. Contrast Media Mol. Imaging. 2012;7:485–493. doi: 10.1002/cmmi.1477. PubMed DOI
McGregor J.E., Staniewicz L.T.L., Guthrie S.E., Donald A.M. Environmental scanning electron microscopy in cell biology. Methods Mol. Biol. 2013;931:493–516. doi: 10.1007/978-1-62703-056-4_26. PubMed DOI
Lifson N., Lassa C.V., Dixit P.K. Relation between blood flow and morphology in islet organ of rat pancreas. Am. J. Physiol. Endocrinol. Metab. 1985;249:E43, E48. doi: 10.1152/ajpendo.1985.249.1.E43. PubMed DOI
Coronel M.M., Stabler C.L. Engineering a local microenvironment for pancreatic islet replacement. Curr. Opin. Biotechnol. 2013;24:900–908. doi: 10.1016/j.copbio.2013.05.004. PubMed DOI PMC
Bi H., Ye K., Jin S. Proteomic analysis of decellularized pancreatic matrix identifies collagen V as a critical regulator for islet organogenesis from human pluripotent stem cells. Biomaterials. 2020;233:119673. doi: 10.1016/j.biomaterials.2019.119673. PubMed DOI
Hashemi J., Barati G., Bibak B. Decellularized Matrix Bioscaffolds: Implementation of Native Microenvironment in Pancreatic Tissue Engineering. Pancreas. 2021;50:942–951. doi: 10.1097/MPA.0000000000001868. PubMed DOI
Cationic fluorinated micelles for cell labeling and 19F-MR imaging