Sodium Glucose Cotransporter-2 Inhibitors: Spotlight on Favorable Effects on Clinical Outcomes beyond Diabetes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
Project RVO-VFN64165
General University Hospital in Prague
PubMed
35269954
PubMed Central
PMC8911473
DOI
10.3390/ijms23052812
PII: ijms23052812
Knihovny.cz E-zdroje
- Klíčová slova
- SGLT2, SGLT2 inhibitors, chronic kidney disease, diabetes, heart failure,
- MeSH
- diabetes mellitus 2. typu * farmakoterapie metabolismus MeSH
- glifloziny * farmakologie terapeutické užití MeSH
- glukosa terapeutické užití MeSH
- kardiovaskulární systém * metabolismus MeSH
- lidé MeSH
- sodík metabolismus MeSH
- transportér 2 pro sodík a glukózu metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- glifloziny * MeSH
- glukosa MeSH
- sodík MeSH
- transportér 2 pro sodík a glukózu MeSH
Sodium glucose transporter type 2 (SGLT2) molecules are found in proximal tubules of the kidney, and perhaps in the brain or intestine, but rarely in any other tissue. However, their inhibitors, intended to improve diabetes compensation, have many more beneficial effects. They improve kidney and cardiovascular outcomes and decrease mortality. These benefits are not limited to diabetics but were also found in non-diabetic individuals. The pathophysiological pathways underlying the treatment success have been investigated in both clinical and experimental studies. There have been numerous excellent reviews, but these were mostly restricted to limited aspects of the knowledge. The aim of this review is to summarize the known experimental and clinical evidence of SGLT2 inhibitors' effects on individual organs (kidney, heart, liver, etc.), as well as the systemic changes that lead to an improvement in clinical outcomes.
Zobrazit více v PubMed
Wanner C., Inzucchi S.E., Zinman B. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N. Engl. J. Med. 2016;375:1801–1802. doi: 10.1056/NEJMoa1515920. PubMed DOI
Perkovic V., Jardine M.J., Neal B., Bompoint S., Heerspink H.J.L., Charytan D.M., Edwards R., Agarwal R., Bakris G., Bull S., et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N. Engl. J. Med. 2019;380:2295–2306. doi: 10.1056/NEJMoa1811744. PubMed DOI
Mosenzon O., Wiviott S.D., Cahn A., Rozenberg A., Yanuv I., Goodrich E.L., Murphy S.A., Heerspink H.J.L., Zelniker T.A., Dwyer J.P., et al. Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: An analysis from the DECLARE-TIMI 58 randomised trial. Lancet Diabetes Endocrinol. 2019;7:606–617. doi: 10.1016/S2213-8587(19)30180-9. PubMed DOI
McMurray J.J.V., Solomon S.D., Inzucchi S.E., Køber L., Kosiborod M.N., Martinez F.A., Ponikowski P., Sabatine M.S., Anand I.S., Bělohlávek J., et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2019;381:1995–2008. doi: 10.1056/NEJMoa1911303. PubMed DOI
Neal B., Perkovic V., Mahaffey K.W., de Zeeuw D., Fulcher G., Erondu N., Shaw W., Law G., Desai M., Matthews D.R., et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N. Engl. J. Med. 2017;377:644–657. doi: 10.1056/NEJMoa1611925. PubMed DOI
Kosiborod M., Lam C.S.P., Kohsaka S., Kim D.J., Karasik A., Shaw J., Tangri N., Goh S.Y., Thuresson M., Chen H., et al. Cardiovascular Events Associated With SGLT-2 Inhibitors Versus Other Glucose-Lowering Drugs: The CVD-REAL 2 Study. J. Am. Coll. Cardiol. 2018;71:2628–2639. doi: 10.1016/j.jacc.2018.03.009. PubMed DOI
Rådholm K., Figtree G., Perkovic V., Solomon S.D., Mahaffey K.W., de Zeeuw D., Fulcher G., Barrett T.D., Shaw W., Desai M., et al. Canagliflozin and Heart Failure in Type 2 Diabetes Mellitus: Results From the CANVAS Program. Circulation. 2018;138:458–468. doi: 10.1161/CIRCULATIONAHA.118.034222. PubMed DOI PMC
Heerspink H.J.L., Sjöström C.D., Jongs N., Chertow G.M., Kosiborod M., Hou F.F., McMurray J.J.V., Rossing P., Correa-Rotter R., Kurlyandskaya R., et al. Effects of dapagliflozin on mortality in patients with chronic kidney disease: A pre-specified analysis from the DAPA-CKD randomized controlled trial. Eur. Heart J. 2021;42:1216–1227. doi: 10.1093/eurheartj/ehab094. PubMed DOI PMC
Packer M., Anker S.D., Butler J., Filippatos G., Pocock S.J., Carson P., Januzzi J., Verma S., Tsutsui H., Brueckmann M., et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N. Engl. J. Med. 2020;383:1413–1424. doi: 10.1056/NEJMoa2022190. PubMed DOI
Li L.F., Ding L.L., Zhan Z.L., Qiu M. Meta-Analysis on the Safety and Cardiorenal Efficacy of SGLT2 Inhibitors in Patients Without T2DM. Front. Cardiovasc. Med. 2021;8:690529. doi: 10.3389/fcvm.2021.690529. PubMed DOI PMC
Vargas Vargas R.A., Varela Millán J.M., Fajardo Bonilla E. Renin-angiotensin system: Basic and clinical aspects-A general perspective. Endocrinol. Diabetes Nutr. 2022;69:52–62. doi: 10.1016/j.endinu.2021.05.012. PubMed DOI PMC
Sabolic I., Vrhovac I., Eror D.B., Gerasimova M., Rose M., Breljak D., Ljubojevic M., Brzica H., Sebastiani A., Thal S.C., et al. Expression of Na+-D-glucose cotransporter SGLT2 in rodents is kidney-specific and exhibits sex and species differences. Am. J. Physiol. Cell. Physiol. 2012;302:C1174–C1188. doi: 10.1152/ajpcell.00450.2011. PubMed DOI PMC
Nguyen T., Wen S., Gong M., Yuan X., Xu D., Wang C., Jin J., Zhou L. Dapagliflozin Activates Neurons in the Central Nervous System and Regulates Cardiovascular Activity by Inhibiting SGLT-2 in Mice. Diabetes Metab. Syndr. Obes. 2020;13:2781–2799. doi: 10.2147/DMSO.S258593. PubMed DOI PMC
Bolla A.M., Butera E., Pellegrini S., Caretto A., Bonfanti R., Zuppardo R.A., Barera G., Cavestro G.M., Sordi V., Bosi E. Expression of glucose transporters in duodenal mucosa of patients with type 1 diabetes. Acta Diabetol. 2020;57:1367–1373. doi: 10.1007/s00592-020-01558-w. PubMed DOI
Vallon V., Nakagawa T. Renal Tubular Handling of Glucose and Fructose in Health and Disease. Compr. Physiol. 2021;12:2995–3044. doi: 10.1002/cphy.c210030. PubMed DOI PMC
Powell D.R., DaCosta C.M., Gay J., Ding Z.M., Smith M., Greer J., Doree D., Jeter-Jones S., Mseeh F., Rodriguez L.A., et al. Improved glycemic control in mice lacking Sglt1 and Sglt2. Am. J. Physiol. Endocrinol. Metab. 2013;304:E117–E130. doi: 10.1152/ajpendo.00439.2012. PubMed DOI
Polidori D., Sha S., Mudaliar S., Ciaraldi T.P., Ghosh A., Vaccaro N., Farrell K., Rothenberg P., Henry R.R. Canagliflozin lowers postprandial glucose and insulin by delaying intestinal glucose absorption in addition to increasing urinary glucose excretion: Results of a randomized, placebo-controlled study. Diabetes Care. 2013;36:2154–2161. doi: 10.2337/dc12-2391. PubMed DOI PMC
Powell D.R., Zambrowicz B., Morrow L., Beysen C., Hompesch M., Turner S., Hellerstein M., Banks P., Strumph P., Lapuerta P. Sotagliflozin Decreases Postprandial Glucose and Insulin Concentrations by Delaying Intestinal Glucose Absorption. J. Clin. Endocrinol. Metab. 2020;105:e1235–e1249. doi: 10.1210/clinem/dgz258. PubMed DOI PMC
Leiter L.A., Forst T., Polidori D., Balis D.A., Xie J., Sha S. Effect of canagliflozin on liver function tests in patients with type 2 diabetes. Diabetes Metab. 2016;42:25–32. doi: 10.1016/j.diabet.2015.10.003. PubMed DOI
Neuen B.L., Oshima M., Perkovic V., Agarwal R., Arnott C., Bakris G., Cannon C.P., Charytan D.M., Edwards R., Górriz J.L., et al. Effects of canagliflozin on serum potassium in people with diabetes and chronic kidney disease: The CREDENCE trial. Eur. Heart J. 2021;42:4891–4901. doi: 10.1093/eurheartj/ehab497. PubMed DOI
Filippatos T.D., Tsimihodimos V., Liamis G., Elisaf M.S. SGLT2 inhibitors-induced electrolyte abnormalities: An analysis of the associated mechanisms. Diabetes Metab. Syndr. 2018;12:59–63. doi: 10.1016/j.dsx.2017.08.003. PubMed DOI
van Bommel E.J.M., Geurts F., Muskiet M.H.A., Post A., Bakker S.J.L., Danser A.H.J., Touw D.J., van Berkel M., Kramer M.H.H., Nieuwdorp M., et al. SGLT2 inhibition versus sulfonylurea treatment effects on electrolyte and acid-base balance: Secondary analysis of a clinical trial reaching glycemic equipoise: Tubular effects of SGLT2 inhibition in Type 2 diabetes. Clin. Sci. 2020;134:3107–3118. doi: 10.1042/CS20201274. PubMed DOI
Toto R.D., Goldenberg R., Chertow G.M., Cain V., Stefánsson B.V., Sjöström C.D., Sartipy P. Correction of hypomagnesemia by dapagliflozin in patients with type 2 diabetes: A post hoc analysis of 10 randomized, placebo-controlled trials. J. Diabetes Complicat. 2019;33:107402. doi: 10.1016/j.jdiacomp.2019.06.007. PubMed DOI
de Jong M.A., Petrykiv S.I., Laverman G.D., van Herwaarden A.E., de Zeeuw D., Bakker S.J.L., Heerspink H.J.L., de Borst M.H. Effects of Dapagliflozin on Circulating Markers of Phosphate Homeostasis. Clin. J. Am. Soc. Nephrol. 2019;14:66–73. doi: 10.2215/CJN.04530418. PubMed DOI PMC
Davies M.J., Trujillo A., Vijapurkar U., Damaraju C.V., Meininger G. Effect of canagliflozin on serum uric acid in patients with type 2 diabetes mellitus. Diabetes Obes. Metab. 2015;17:426–429. doi: 10.1111/dom.12439. PubMed DOI PMC
Hu X., Yang Y., Jia X., Liu H., Wei M., Lyu Z. Effects of sodium-glucose cotransporter 2 inhibitors on serum uric acid in patients with type 2 diabetes mellitus: A systematic review and network meta-analysis. Diabetes Obes. Metab. 2022;24:228–238. doi: 10.1111/dom.14570. PubMed DOI
Hayashi T., Fukui T., Nakanishi N., Yamamoto S., Tomoyasu M., Osamura A., Ohara M., Yamamoto T., Ito Y., Hirano T. Dapagliflozin decreases small dense low-density lipoprotein-cholesterol and increases high-density lipoprotein 2-cholesterol in patients with type 2 diabetes: Comparison with sitagliptin. Cardiovasc. Diabetol. 2017;16:8. doi: 10.1186/s12933-016-0491-5. PubMed DOI PMC
Sánchez-García A., Simental-Mendía M., Millán-Alanís J.M., Simental-Mendía L.E. Effect of sodium-glucose co-transporter 2 inhibitors on lipid profile: A systematic review and meta-analysis of 48 randomized controlled trials. Pharmacol. Res. 2020;160:105068. doi: 10.1016/j.phrs.2020.105068. PubMed DOI
Zanchi A., Burnier M., Muller M.E., Ghajarzadeh-Wurzner A., Maillard M., Loncle N., Milani B., Dufour N., Bonny O., Pruijm M. Acute and Chronic Effects of SGLT2 Inhibitor Empagliflozin on Renal Oxygenation and Blood Pressure Control in Nondiabetic Normotensive Subjects: A Randomized, Placebo-Controlled Trial. J. Am. Heart Assoc. 2020;9:e016173. doi: 10.1161/JAHA.119.016173. PubMed DOI PMC
Wang X., Fu R., Liu H., Ma Y., Qiu X., Dong Z. The effects of sodium glucose co-transporter (SGLT) 2 inhibitors on hematocrit levels: A systematic review and meta-analysis of randomized controlled trials. Ann. Palliat. Med. 2021;10:6467–6481. doi: 10.21037/apm-21-1022. PubMed DOI
Holman R.R., Sourij H., Califf R.M. Cardiovascular outcome trials of glucose-lowering drugs or strategies in type 2 diabetes. Lancet. 2014;383:2008–2017. doi: 10.1016/S0140-6736(14)60794-7. PubMed DOI
Fralick M., Colacci M., Odutayo A., Siemieniuk R., Glynn R.J. Lowering of hemoglobin A1C and risk of cardiovascular outcomes and all-cause mortality, a meta-regression analysis. J. Diabetes Complicat. 2020;34:107704. doi: 10.1016/j.jdiacomp.2020.107704. PubMed DOI
Yaribeygi H., Sathyapalan T., Maleki M., Jamialahmadi T., Sahebkar A. Molecular mechanisms by which SGLT2 inhibitors can induce insulin sensitivity in diabetic milieu: A mechanistic review. Life Sci. 2020;240:117090. doi: 10.1016/j.lfs.2019.117090. PubMed DOI
Wei R., Cui X., Feng J., Gu L., Lang S., Wei T., Yang J., Liu J., Le Y., Wang H., et al. Dapagliflozin promotes beta cell regeneration by inducing pancreatic endocrine cell phenotype conversion in type 2 diabetic mice. Metabolism. 2020;111:154324. doi: 10.1016/j.metabol.2020.154324. PubMed DOI
Pospisilik J.A., Martin J., Doty T., Ehses J.A., Pamir N., Lynn F.C., Piteau S., Demuth H.U., McIntosh C.H., Pederson R.A. Dipeptidyl peptidase IV inhibitor treatment stimulates beta-cell survival and islet neogenesis in streptozotocin-induced diabetic rats. Diabetes. 2003;52:741–750. doi: 10.2337/diabetes.52.3.741. PubMed DOI
Merovci A., Solis-Herrera C., Daniele G., Eldor R., Fiorentino T.V., Tripathy D., Xiong J., Perez Z., Norton L., Abdul-Ghani M.A., et al. Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production. J. Clin. Investig. 2014;124:509–514. doi: 10.1172/JCI70704. PubMed DOI PMC
Ferrannini E., Muscelli E., Frascerra S., Baldi S., Mari A., Heise T., Broedl U.C., Woerle H.J. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J. Clin. Investig. 2014;124:499–508. doi: 10.1172/JCI72227. PubMed DOI PMC
Bolinder J., Ljunggren Ö., Kullberg J., Johansson L., Wilding J., Langkilde A.M., Sugg J., Parikh S. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J. Clin. Endocrinol. Metab. 2012;97:1020–1031. doi: 10.1210/jc.2011-2260. PubMed DOI
Bolinder J., Ljunggren Ö., Johansson L., Wilding J., Langkilde A.M., Sjöström C.D., Sugg J., Parikh S. Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin. Diabetes Obes. Metab. 2014;16:159–169. doi: 10.1111/dom.12189. PubMed DOI
Forst T., Guthrie R., Goldenberg R., Yee J., Vijapurkar U., Meininger G., Stein P. Efficacy and safety of canagliflozin over 52 weeks in patients with type 2 diabetes on background metformin and pioglitazone. Diabetes Obes. Metab. 2014;16:467–477. doi: 10.1111/dom.12273. PubMed DOI PMC
Matthaei S., Bowering K., Rohwedder K., Sugg J., Parikh S., Johnsson E., Group S. Durability and tolerability of dapagliflozin over 52 weeks as add-on to metformin and sulphonylurea in type 2 diabetes. Diabetes Obes. Metab. 2015;17:1075–1084. doi: 10.1111/dom.12543. PubMed DOI
Rosenstock J., Vico M., Wei L., Salsali A., List J.F. Effects of dapagliflozin, an SGLT2 inhibitor, on HbA(1c), body weight, and hypoglycemia risk in patients with type 2 diabetes inadequately controlled on pioglitazone monotherapy. Diabetes Care. 2012;35:1473–1478. doi: 10.2337/dc11-1693. PubMed DOI PMC
Ferrannini E., Baldi S., Frascerra S., Astiarraga B., Heise T., Bizzotto R., Mari A., Pieber T.R., Muscelli E. Shift to Fatty Substrate Utilization in Response to Sodium-Glucose Cotransporter 2 Inhibition in Subjects Without Diabetes and Patients With Type 2 Diabetes. Diabetes. 2016;65:1190–1195. doi: 10.2337/db15-1356. PubMed DOI
Mishima E., Fukuda S., Kanemitsu Y., Saigusa D., Mukawa C., Asaji K., Matsumoto Y., Tsukamoto H., Tachikawa T., Tsukimi T., et al. Canagliflozin reduces plasma uremic toxins and alters the intestinal microbiota composition in a chronic kidney disease mouse model. Am. J. Physiol. Renal. Physiol. 2018;315:F824–F833. doi: 10.1152/ajprenal.00314.2017. PubMed DOI
van Bommel E.J.M., Herrema H., Davids M., Kramer M.H.H., Nieuwdorp M., van Raalte D.H. Effects of 12-week treatment with dapagliflozin and gliclazide on faecal microbiome: Results of a double-blind randomized trial in patients with type 2 diabetes. Diabetes Metab. 2020;46:164–168. doi: 10.1016/j.diabet.2019.11.005. PubMed DOI
Sawada Y., Izumida Y., Takeuchi Y., Aita Y., Wada N., Li E., Murayama Y., Piao X., Shikama A., Masuda Y., et al. Effect of sodium-glucose cotransporter 2 (SGLT2) inhibition on weight loss is partly mediated by liver-brain-adipose neurocircuitry. Biochem. Biophys. Res. Commun. 2017;493:40–45. doi: 10.1016/j.bbrc.2017.09.081. PubMed DOI
Yang X., Liu Q., Li Y., Ding Y., Zhao Y., Tang Q., Wu T., Chen L., Pu S., Cheng S., et al. Inhibition of the sodium-glucose co-transporter SGLT2 by canagliflozin ameliorates diet-induced obesity by increasing intra-adipose sympathetic innervation. Br. J. Pharmacol. 2021;178:1756–1771. doi: 10.1111/bph.15381. PubMed DOI
Perry R.J., Shulman G.I. Sodium glucose cotransporter-2 inhibitors: Understanding the mechanisms for therapeutic promise and persisting risks. J. Biol. Chem. 2020;295:14379–14390. doi: 10.1074/jbc.REV120.008387. PubMed DOI PMC
Davies M.J., D’Alessio D.A., Fradkin J., Kernan W.N., Mathieu C., Mingrone G., Rossing P., Tsapas A., Wexler D.J., Buse J.B. Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) Diabetes Care. 2018;41:2669–2701. doi: 10.2337/dci18-0033. PubMed DOI PMC
Chilton R., Tikkanen I., Cannon C.P., Crowe S., Woerle H.J., Broedl U.C., Johansen O.E. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes. Metab. 2015;17:1180–1193. doi: 10.1111/dom.12572. PubMed DOI PMC
Mazidi M., Rezaie P., Gao H.K., Kengne A.P. Effect of Sodium-Glucose Cotransport-2 Inhibitors on Blood Pressure in People With Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of 43 Randomized Control Trials With 22 528 Patients. J. Am. Heart Assoc. 2017;6:e004007. doi: 10.1161/JAHA.116.004007. PubMed DOI PMC
Baker W.L., Buckley L.F., Kelly M.S., Bucheit J.D., Parod E.D., Brown R., Carbone S., Abbate A., Dixon D.L. Effects of Sodium-Glucose Cotransporter 2 Inhibitors on 24-Hour Ambulatory Blood Pressure: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2017;6:e005686. doi: 10.1161/JAHA.117.005686. PubMed DOI PMC
Tanaka H., Takano K., Iijima H., Kubo H., Maruyama N., Hashimoto T., Arakawa K., Togo M., Inagaki N., Kaku K. Factors Affecting Canagliflozin-Induced Transient Urine Volume Increase in Patients with Type 2 Diabetes Mellitus. Adv. Ther. 2017;34:436–451. doi: 10.1007/s12325-016-0457-8. PubMed DOI PMC
Boorsma E.M., Beusekamp J.C., Ter Maaten J.M., Figarska S.M., Danser A.H.J., van Veldhuisen D.J., van der Meer P., Heerspink H.J.L., Damman K., Voors A.A. Effects of empagliflozin on renal sodium and glucose handling in patients with acute heart failure. Eur. J. Heart Fail. 2021;23:68–78. doi: 10.1002/ejhf.2066. PubMed DOI PMC
Damman K., Gori M., Claggett B., Jhund P.S., Senni M., Lefkowitz M.P., Prescott M.F., Shi V.C., Rouleau J.L., Swedberg K., et al. Renal Effects and Associated Outcomes During Angiotensin-Neprilysin Inhibition in Heart Failure. JACC Heart Fail. 2018;6:489–498. doi: 10.1016/j.jchf.2018.02.004. PubMed DOI
Jensen J., Omar M., Kistorp C., Tuxen C., Gustafsson I., Køber L., Gustafsson F., Faber J., Malik M.E., Fosbøl E.L., et al. Effects of empagliflozin on estimated extracellular volume, estimated plasma volume, and measured glomerular filtration rate in patients with heart failure (Empire HF Renal): A prespecified substudy of a double-blind, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2021;9:106–116. doi: 10.1016/S2213-8587(20)30382-X. PubMed DOI
Karg M.V., Bosch A., Kannenkeril D., Striepe K., Ott C., Schneider M.P., Boemke-Zelch F., Linz P., Nagel A.M., Titze J., et al. SGLT-2-inhibition with dapagliflozin reduces tissue sodium content: A randomised controlled trial. Cardiovasc. Diabetol. 2018;17:5. doi: 10.1186/s12933-017-0654-z. PubMed DOI PMC
Chilton R., Tikkanen I., Hehnke U., Woerle H.J., Johansen O.E. Impact of empagliflozin on blood pressure in dipper and non-dipper patients with type 2 diabetes mellitus and hypertension. Diabetes Obes. Metab. 2017;19:1620–1624. doi: 10.1111/dom.12962. PubMed DOI
Weber M.A., Mansfield T.A., Cain V.A., Iqbal N., Parikh S., Ptaszynska A. Blood pressure and glycaemic effects of dapagliflozin versus placebo in patients with type 2 diabetes on combination antihypertensive therapy: A randomised, double-blind, placebo-controlled, phase 3 study. Lancet Diabetes Endocrinol. 2016;4:211–220. doi: 10.1016/S2213-8587(15)00417-9. PubMed DOI
Mancia G., Cannon C.P., Tikkanen I., Zeller C., Ley L., Woerle H.J., Broedl U.C., Johansen O.E. Impact of Empagliflozin on Blood Pressure in Patients With Type 2 Diabetes Mellitus and Hypertension by Background Antihypertensive Medication. Hypertension. 2016;68:1355–1364. doi: 10.1161/HYPERTENSIONAHA.116.07703. PubMed DOI
Sano M. Sodium glucose cotransporter (SGLT)-2 inhibitors alleviate the renal stress responsible for sympathetic activation. Ther. Adv. Cardiovasc. Dis. 2020;14:1753944720939383. doi: 10.1177/1753944720939383. PubMed DOI PMC
Castoldi G., Carletti R., Ippolito S., Colzani M., Barzaghi F., Stella A., Zerbini G., Perseghin G., di Gioia C.R.T. Renal Anti-Fibrotic Effect of Sodium Glucose Cotransporter 2 Inhibition in Angiotensin II-Dependent Hypertension. Am. J. Nephrol. 2020;51:119–129. doi: 10.1159/000505144. PubMed DOI
Thoene-Reineke C., Rumschüssel K., Schmerbach K., Krikov M., Wengenmayer C., Godes M., Mueller S., Villringer A., Steckelings U., Namsolleck P., et al. Prevention and intervention studies with telmisartan, ramipril and their combination in different rat stroke models. PLoS ONE. 2011;6:e23646. doi: 10.1371/journal.pone.0023646. PubMed DOI PMC
Whelton P.K., Carey R.M., Aronow W.S., Casey D.E., Collins K.J., Dennison Himmelfarb C., DePalma S.M., Gidding S., Jamerson K.A., Jones D.W., et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2017;71:1269–1324. doi: 10.1161/HYP.0000000000000065. PubMed DOI
Williams B., Mancia G., Spiering W., Agabiti Rosei E., Azizi M., Burnier M., Clement D., Coca A., De Simone G., Dominiczak A., et al. 2018 Practice Guidelines for the management of arterial hypertension of the European Society of Hypertension and the European Society of Cardiology: ESH/ESC Task Force for the Management of Arterial Hypertension. J. Hypertens. 2018;36:2284–2309. doi: 10.1097/HJH.0000000000001961. PubMed DOI
Cheung A.K., Chang T.I., Cushman W.C., Furth S.L., Hou F.F., Ix J.H., Knoll G.A., Muntner P., Pecoits-Filho R., Sarnak M.J., et al. KDIGO 2021 Clinical Practice Guideline for the Management of Blood Pressure in Chronic Kidney Disease. Kidney Int. 2021;99:S1–S87. doi: 10.1016/j.kint.2020.11.003. PubMed DOI
Kim S.R., Lee S.G., Kim S.H., Kim J.H., Choi E., Cho W., Rim J.H., Hwang I., Lee C.J., Lee M., et al. SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nat. Commun. 2020;11:2127. doi: 10.1038/s41467-020-15983-6. PubMed DOI PMC
Garvey W.T., Van Gaal L., Leiter L.A., Vijapurkar U., List J., Cuddihy R., Ren J., Davies M.J. Effects of canagliflozin versus glimepiride on adipokines and inflammatory biomarkers in type 2 diabetes. Metabolism. 2018;85:32–37. doi: 10.1016/j.metabol.2018.02.002. PubMed DOI
Nalugo M., Harroun N., Li C., Belaygorod L., Semenkovich C.F., Zayed M.A. Canagliflozin impedes ischemic hind-limb recovery in the setting of diabetes. Vasc. Med. 2021;26:131–138. doi: 10.1177/1358863X20961153. PubMed DOI PMC
Hanaguri J., Yokota H., Kushiyama A., Kushiyama S., Watanabe M., Yamagami S., Nagaoka T. The Effect of Sodium-Dependent Glucose Cotransporter 2 Inhibitor Tofogliflozin on Neurovascular Coupling in the Retina in Type 2 Diabetic Mice. Int. J. Mol. Sci. 2022;23:1362. doi: 10.3390/ijms23031362. PubMed DOI PMC
Sabaner M.C., Duman R., Dogan M., Akdogan M., Vurmaz A., Bozkurt E., Beysel S. Do SGLT2 inhibitors prevent preclinical diabetic retinopathy? A Prospective Pilot Optical Coherence Tomography Angiography Study. J. Fr. Ophtalmol. 2021;44:1159–1167. doi: 10.1016/j.jfo.2021.01.005. PubMed DOI
Sawicki K.T., Ben-Sahra I., McNally E.M. SGLT2 Inhibition on Cardiac Mitochondrial Function: Searching for a Sweet Spot. J. Am. Heart Assoc. 2021;10:e021949. doi: 10.1161/JAHA.121.021949. PubMed DOI PMC
Maejima Y. SGLT2 Inhibitors Play a Salutary Role in Heart Failure via Modulation of the Mitochondrial Function. Front. Cardiovasc. Med. 2019;6:186. doi: 10.3389/fcvm.2019.00186. PubMed DOI PMC
Song Y., Huang C., Sin J., Germano J.F., Taylor D.J.R., Thakur R., Gottlieb R.A., Mentzer R.M., Andres A.M. Attenuation of Adverse Postinfarction Left Ventricular Remodeling with Empagliflozin Enhances Mitochondria-Linked Cellular Energetics and Mitochondrial Biogenesis. Int. J. Mol. Sci. 2021;23:437. doi: 10.3390/ijms23010437. PubMed DOI PMC
Leng W., Ouyang X., Lei X., Wu M., Chen L., Wu Q., Deng W., Liang Z. The SGLT-2 Inhibitor Dapagliflozin Has a Therapeutic Effect on Atherosclerosis in Diabetic ApoE. Mediat. Inflamm. 2016;2016:6305735. doi: 10.1155/2016/6305735. PubMed DOI PMC
Pennig J., Scherrer P., Gissler M.C., Anto-Michel N., Hoppe N., Füner L., Härdtner C., Stachon P., Wolf D., Hilgendorf I., et al. Glucose lowering by SGLT2-inhibitor empagliflozin accelerates atherosclerosis regression in hyperglycemic STZ-diabetic mice. Sci. Rep. 2019;9:17937. doi: 10.1038/s41598-019-54224-9. PubMed DOI PMC
Trnovska J., Svoboda P., Pelantova H., Kuzma M., Kratochvilova H., Kasperova B.J., Dvorakova I., Rosolova K., Malinska H., Huttl M., et al. Complex Positive Effects of SGLT-2 Inhibitor Empagliflozin in the Liver, Kidney and Adipose Tissue of Hereditary Hypertriglyceridemic Rats: Possible Contribution of Attenuation of Cell Senescence and Oxidative Stress. Int. J. Mol. Sci. 2021;22:10606. doi: 10.3390/ijms221910606. PubMed DOI PMC
Pfeifer M., Townsend R.R., Davies M.J., Vijapurkar U., Ren J. Effects of canagliflozin, a sodium glucose co-transporter 2 inhibitor, on blood pressure and markers of arterial stiffness in patients with type 2 diabetes mellitus: A post hoc analysis. Cardiovasc. Diabetol. 2017;16:29. doi: 10.1186/s12933-017-0511-0. PubMed DOI PMC
Schutte R., Thijs L., Asayama K., Boggia J., Li Y., Hansen T.W., Liu Y.P., Kikuya M., Björklund-Bodegård K., Ohkubo T., et al. Double product reflects the predictive power of systolic pressure in the general population: Evidence from 9,937 participants. Am. J. Hypertens. 2013;26:665–672. doi: 10.1093/ajh/hps119. PubMed DOI PMC
Solini A., Giannini L., Seghieri M., Vitolo E., Taddei S., Ghiadoni L., Bruno R.M. Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: A pilot study. Cardiovasc. Diabetol. 2017;16:138. doi: 10.1186/s12933-017-0621-8. PubMed DOI PMC
Shigiyama F., Kumashiro N., Miyagi M., Ikehara K., Kanda E., Uchino H., Hirose T. Effectiveness of dapagliflozin on vascular endothelial function and glycemic control in patients with early-stage type 2 diabetes mellitus: DEFENCE study. Cardiovasc. Diabetol. 2017;16:84. doi: 10.1186/s12933-017-0564-0. PubMed DOI PMC
Bonora B.M., Avogaro A., Fadini G.P. Extraglycemic Effects of SGLT2 Inhibitors: A Review of the Evidence. Diabetes Metab. Syndr. Obes. 2020;13:161–174. doi: 10.2147/DMSO.S233538. PubMed DOI PMC
Takata T., Isomoto H. Pleiotropic Effects of Sodium-Glucose Cotransporter-2 Inhibitors: Renoprotective Mechanisms beyond Glycemic Control. Int. J. Mol. Sci. 2021;22:4374. doi: 10.3390/ijms22094374. PubMed DOI PMC
Chino Y., Samukawa Y., Sakai S., Nakai Y., Yamaguchi J., Nakanishi T., Tamai I. SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria. Biopharm. Drug Dispos. 2014;35:391–404. doi: 10.1002/bdd.1909. PubMed DOI PMC
Sharma N., Li L., Ecelbarger C.M. Sex differences in renal and metabolic responses to a high-fructose diet in mice. Am. J. Physiol. Renal. Physiol. 2015;308:F400–F410. doi: 10.1152/ajprenal.00403.2014. PubMed DOI PMC
Sharaf El Din U.A.A., Salem M.M., Abdulazim D.O. Sodium-glucose cotransporter 2 inhibitors as the first universal treatment of chronic kidney disease. Nefrologia. 2021 doi: 10.1016/j.nefro.2021.03.014. PubMed DOI
Novikov A., Fu Y., Huang W., Freeman B., Patel R., van Ginkel C., Koepsell H., Busslinger M., Onishi A., Nespoux J., et al. SGLT2 inhibition and renal urate excretion: Role of luminal glucose, GLUT9, and URAT1. Am. J. Physiol. Renal. Physiol. 2019;316:F173–F185. doi: 10.1152/ajprenal.00462.2018. PubMed DOI PMC
Verma S., Ji Q., Bhatt D.L., Mazer C.D., Al-Omran M., Inzucchi S.E., Wanner C., Ofstad A.P., Zwiener I., George J.T., et al. Association between uric acid levels and cardio-renal outcomes and death in patients with type 2 diabetes: A subanalysis of EMPA-REG OUTCOME. Diabetes Obes. Metab. 2020;22:1207–1214. doi: 10.1111/dom.13991. PubMed DOI PMC
Chino Y., Kuwabara M., Hisatome I. Factors Influencing Change in Serum Uric Acid After Administration of the Sodium-Glucose Cotransporter 2 Inhibitor Luseogliflozin in Patients With Type 2 Diabetes Mellitus. J. Clin. Pharmacol. 2022;62:366–375. doi: 10.1002/jcph.1970. PubMed DOI PMC
Ray E.C. Evolving understanding of cardiovascular protection by SGLT2 inhibitors: Focus on renal protection, myocardial effects, uric acid, and magnesium balance. Curr. Opin. Pharmacol. 2020;54:11–17. doi: 10.1016/j.coph.2020.06.001. PubMed DOI PMC
Aberle J., Menzen M., Schmid S.M., Terkamp C., Jaeckel E., Rohwedder K., Scheerer M.F., Xu J., Tang W., Birkenfeld A.L. Dapagliflozin effects on haematocrit, red blood cell count and reticulocytes in insulin-treated patients with type 2 diabetes. Sci. Rep. 2020;10:22396. doi: 10.1038/s41598-020-78734-z. PubMed DOI PMC
Thiele K., Rau M., Hartmann N.K., Möllmann J., Jankowski J., Böhm M., Keszei A.P., Marx N., Lehrke M. Effects of empagliflozin on erythropoiesis in patients with type 2 diabetes: Data from a randomized, placebo-controlled study. Diabetes Obes. Metab. 2021;23:2814–2818. doi: 10.1111/dom.14517. PubMed DOI
Ljunggren Ö., Bolinder J., Johansson L., Wilding J., Langkilde A.M., Sjöström C.D., Sugg J., Parikh S. Dapagliflozin has no effect on markers of bone formation and resorption or bone mineral density in patients with inadequately controlled type 2 diabetes mellitus on metformin. Diabetes Obes. Metab. 2012;14:990–999. doi: 10.1111/j.1463-1326.2012.01630.x. PubMed DOI
Heerspink H.J., Desai M., Jardine M., Balis D., Meininger G., Perkovic V. Canagliflozin Slows Progression of Renal Function Decline Independently of Glycemic Effects. J. Am. Soc. Nephrol. 2017;28:368–375. doi: 10.1681/ASN.2016030278. PubMed DOI PMC
Heerspink H.J.L., Stefánsson B.V., Correa-Rotter R., Chertow G.M., Greene T., Hou F.F., Mann J.F.E., McMurray J.J.V., Lindberg M., Rossing P., et al. Dapagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2020;383:1436–1446. doi: 10.1056/NEJMoa2024816. PubMed DOI
Cherney D.Z.I., Heerspink H.J.L., Frederich R., Maldonado M., Liu J., Pong A., Xu Z.J., Patel S., Hickman A., Mancuso J.P., et al. Effects of ertugliflozin on renal function over 104 weeks of treatment: A post hoc analysis of two randomised controlled trials. Diabetologia. 2020;63:1128–1140. doi: 10.1007/s00125-020-05133-4. PubMed DOI PMC
Chertow G.M., Vart P., Jongs N., Toto R.D., Gorriz J.L., Hou F.F., McMurray J.J.V., Correa-Rotter R., Rossing P., Sjöström C.D., et al. Effects of Dapagliflozin in Stage 4 Chronic Kidney Disease. J. Am. Soc. Nephrol. 2021;32:2352–2361. doi: 10.1681/ASN.2021020167. PubMed DOI PMC
Levin A., Perkovic V., Wheeler D.C., Hantel S., George J.T., von Eynatten M., Koitka-Weber A., Wanner C., Investigators E.-R.O. Empagliflozin and Cardiovascular and Kidney Outcomes across KDIGO Risk Categories. Clin. J. Am. Soc. Nephrol. 2020;15:1433–1444. doi: 10.2215/CJN.14901219. PubMed DOI PMC
Kohan D.E., Fioretto P., Johnsson K., Parikh S., Ptaszynska A., Ying L. The effect of dapagliflozin on renal function in patients with type 2 diabetes. J. Nephrol. 2016;29:391–400. doi: 10.1007/s40620-016-0261-1. PubMed DOI
Fioretto P., Del Prato S., Buse J.B., Goldenberg R., Giorgino F., Reyner D., Langkilde A.M., Sjöström C.D., Sartipy P., Investigators D.S. Efficacy and safety of dapagliflozin in patients with type 2 diabetes and moderate renal impairment (chronic kidney disease stage 3A): The DERIVE Study. Diabetes Obes. Metab. 2018;20:2532–2540. doi: 10.1111/dom.13413. PubMed DOI PMC
Jardine M.J., Zhou Z., Mahaffey K.W., Oshima M., Agarwal R., Bakris G., Bajaj H.S., Bull S., Cannon C.P., Charytan D.M., et al. Renal, Cardiovascular, and Safety Outcomes of Canagliflozin by Baseline Kidney Function: A Secondary Analysis of the CREDENCE Randomized Trial. J. Am. Soc. Nephrol. 2020;31:1128–1139. doi: 10.1681/ASN.2019111168. PubMed DOI PMC
Bakris G., Oshima M., Mahaffey K.W., Agarwal R., Cannon C.P., Capuano G., Charytan D.M., de Zeeuw D., Edwards R., Greene T., et al. Effects of Canagliflozin in Patients with Baseline eGFR < 30 ml/min per 1.73 m. Clin. J. Am. Soc. Nephrol. 2020;15:1705–1714. doi: 10.2215/CJN.10140620. PubMed DOI PMC
Cherney D., Lund S.S., Perkins B.A., Groop P.H., Cooper M.E., Kaspers S., Pfarr E., Woerle H.J., von Eynatten M. The effect of sodium glucose cotransporter 2 inhibition with empagliflozin on microalbuminuria and macroalbuminuria in patients with type 2 diabetes. Diabetologia. 2016;59:1860–1870. doi: 10.1007/s00125-016-4008-2. PubMed DOI
Jongs N., Greene T., Chertow G.M., McMurray J.J.V., Langkilde A.M., Correa-Rotter R., Rossing P., Sjöström C.D., Stefansson B.V., Toto R.D., et al. Effect of dapagliflozin on urinary albumin excretion in patients with chronic kidney disease with and without type 2 diabetes: A prespecified analysis from the DAPA-CKD trial. Lancet Diabetes Endocrinol. 2021;9:755–766. doi: 10.1016/S2213-8587(21)00243-6. PubMed DOI
Cherney D.Z., Perkins B.A., Soleymanlou N., Maione M., Lai V., Lee A., Fagan N.M., Woerle H.J., Johansen O.E., Broedl U.C., et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation. 2014;129:587–597. doi: 10.1161/CIRCULATIONAHA.113.005081. PubMed DOI
van Bommel E.J.M., Muskiet M.H.A., van Baar M.J.B., Tonneijck L., Smits M.M., Emanuel A.L., Bozovic A., Danser A.H.J., Geurts F., Hoorn E.J., et al. The renal hemodynamic effects of the SGLT2 inhibitor dapagliflozin are caused by post-glomerular vasodilatation rather than pre-glomerular vasoconstriction in metformin-treated patients with type 2 diabetes in the randomized, double-blind RED trial. Kidney Int. 2020;97:202–212. doi: 10.1016/j.kint.2019.09.013. PubMed DOI
Gilbert R.E. SGLT2 inhibitors: β blockers for the kidney? Lancet Diabetes Endocrinol. 2016;4:814. doi: 10.1016/S2213-8587(16)30237-6. PubMed DOI
Korbut A.I., Taskaeva I.S., Bgatova N.P., Muraleva N.A., Orlov N.B., Dashkin M.V., Khotskina A.S., Zavyalov E.L., Konenkov V.I., Klein T., et al. SGLT2 Inhibitor Empagliflozin and DPP4 Inhibitor Linagliptin Reactivate Glomerular Autophagy in. Int. J. Mol. Sci. 2020;21:2987. doi: 10.3390/ijms21082987. PubMed DOI PMC
Maestroni S., Zerbini G. Glomerular endothelial cells versus podocytes as the cellular target in diabetic nephropathy. Acta Diabetol. 2018;55:1105–1111. doi: 10.1007/s00592-018-1211-2. PubMed DOI
Hodrea J., Balogh D.B., Hosszu A., Lenart L., Besztercei B., Koszegi S., Sparding N., Genovese F., Wagner L.J., Szabo A.J., et al. Reduced O-GlcNAcylation and tubular hypoxia contribute to the antifibrotic effect of SGLT2 inhibitor dapagliflozin in the diabetic kidney. Am. J. Physiol. Renal. Physiol. 2020;318:F1017–F1029. doi: 10.1152/ajprenal.00021.2020. PubMed DOI PMC
Otomo H., Nara M., Kato S., Shimizu T., Suganuma Y., Sato T., Morii T., Yamada Y., Fujita H. Sodium-glucose cotransporter 2 inhibition attenuates protein overload in renal proximal tubule via suppression of megalin O-GlcNacylation in progressive diabetic nephropathy. Metabolism. 2020;113:154405. doi: 10.1016/j.metabol.2020.154405. PubMed DOI
Hosokawa K., Takata T., Sugihara T., Matono T., Koda M., Kanda T., Taniguchi S., Ida A., Mae Y., Yamamoto M., et al. Ipragliflozin Ameliorates Endoplasmic Reticulum Stress and Apoptosis through Preventing Ectopic Lipid Deposition in Renal Tubules. Int. J. Mol. Sci. 2019;21:190. doi: 10.3390/ijms21010190. PubMed DOI PMC
Li J., Liu H., Takagi S., Nitta K., Kitada M., Srivastava S.P., Takagaki Y., Kanasaki K., Koya D. Renal protective effects of empagliflozin via inhibition of EMT and aberrant glycolysis in proximal tubules. JCI Insight. 2020;5:e129034. doi: 10.1172/jci.insight.129034. PubMed DOI PMC
Zelniker T.A., Wiviott S.D., Raz I., Im K., Goodrich E.L., Bonaca M.P., Mosenzon O., Kato E.T., Cahn A., Furtado R.H.M., et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials. Lancet. 2019;393:31–39. doi: 10.1016/S0140-6736(18)32590-X. PubMed DOI
Verma S., Mazer C.D., Yan A.T., Mason T., Garg V., Teoh H., Zuo F., Quan A., Farkouh M.E., Fitchett D.H., et al. Effect of Empagliflozin on Left Ventricular Mass in Patients With Type 2 Diabetes Mellitus and Coronary Artery Disease: The EMPA-HEART CardioLink-6 Randomized Clinical Trial. Circulation. 2019;140:1693–1702. doi: 10.1161/CIRCULATIONAHA.119.042375. PubMed DOI
Nassif M.E., Windsor S.L., Tang F., Khariton Y., Husain M., Inzucchi S.E., McGuire D.K., Pitt B., Scirica B.M., Austin B., et al. Dapagliflozin Effects on Biomarkers, Symptoms, and Functional Status in Patients With Heart Failure With Reduced Ejection Fraction: The DEFINE-HF Trial. Circulation. 2019;140:1463–1476. doi: 10.1161/CIRCULATIONAHA.119.042929. PubMed DOI
Petrie M.C., Verma S., Docherty K.F., Inzucchi S.E., Anand I., Belohlávek J., Böhm M., Chiang C.E., Chopra V.K., de Boer R.A., et al. Effect of Dapagliflozin on Worsening Heart Failure and Cardiovascular Death in Patients With Heart Failure With and Without Diabetes. JAMA. 2020;323:1353–1368. doi: 10.1001/jama.2020.1906. PubMed DOI PMC
Martinez F.A., Serenelli M., Nicolau J.C., Petrie M.C., Chiang C.E., Tereshchenko S., Solomon S.D., Inzucchi S.E., Køber L., Kosiborod M.N., et al. Efficacy and Safety of Dapagliflozin in Heart Failure With Reduced Ejection Fraction According to Age: Insights From DAPA-HF. Circulation. 2020;141:100–111. doi: 10.1161/CIRCULATIONAHA.119.044133. PubMed DOI
Kumar N., Garg A., Bhatt D.L., Sabongui S., Gupta N., Chaudhry S., Arena R., Verma S. Empagliflozin improves cardiorespiratory fitness in type 2 diabetes: Translational implications. Can. J. Physiol. Pharmacol. 2018;96:1184–1187. doi: 10.1139/cjpp-2018-0359. PubMed DOI
Requena-Ibáñez J.A., Santos-Gallego C.G., Rodriguez-Cordero A., Vargas-Delgado A.P., Mancini D., Sartori S., Atallah-Lajam F., Giannarelli C., Macaluso F., Lala A., et al. Mechanistic Insights of Empagliflozin in Nondiabetic Patients With HFrEF: From the EMPA-TROPISM Study. JACC Heart Fail. 2021;9:578–589. doi: 10.1016/j.jchf.2021.04.014. PubMed DOI
Santos-Gallego C.G., Vargas-Delgado A.P., Requena-Ibanez J.A., Garcia-Ropero A., Mancini D., Pinney S., Macaluso F., Sartori S., Roque M., Sabatel-Perez F., et al. Randomized Trial of Empagliflozin in Nondiabetic Patients With Heart Failure and Reduced Ejection Fraction. J. Am. Coll. Cardiol. 2021;77:243–255. doi: 10.1016/j.jacc.2020.11.008. PubMed DOI
van Bommel E.J.M., Smits M.M., Ruiter D., Muskiet M.H.A., Kramer M.H.H., Nieuwdorp M., Touw D.J., Heerspink H.J.L., Joles J.A., van Raalte D.H. Effects of dapagliflozin and gliclazide on the cardiorenal axis in people with type 2 diabetes. J. Hypertens. 2020;38:1811–1819. doi: 10.1097/HJH.0000000000002480. PubMed DOI
Damman K., Beusekamp J.C., Boorsma E.M., Swart H.P., Smilde T.D.J., Elvan A., van Eck J.W.M., Heerspink H.J.L., Voors A.A. Randomized, double-blind, placebo-controlled, multicentre pilot study on the effects of empagliflozin on clinical outcomes in patients with acute decompensated heart failure (EMPA-RESPONSE-AHF) Eur. J. Heart Fail. 2020;22:713–722. doi: 10.1002/ejhf.1713. PubMed DOI
Januzzi J.L., Xu J., Li J., Shaw W., Oh R., Pfeifer M., Butler J., Sattar N., Mahaffey K.W., Neal B., et al. Effects of Canagliflozin on Amino-Terminal Pro-B-Type Natriuretic Peptide: Implications for Cardiovascular Risk Reduction. J. Am. Coll. Cardiol. 2020;76:2076–2085. doi: 10.1016/j.jacc.2020.09.004. PubMed DOI
Rau M., Thiele K., Hartmann N.K., Schuh A., Altiok E., Möllmann J., Keszei A.P., Böhm M., Marx N., Lehrke M. Empagliflozin does not change cardiac index nor systemic vascular resistance but rapidly improves left ventricular filling pressure in patients with type 2 diabetes: A randomized controlled study. Cardiovasc. Diabetol. 2021;20:6. doi: 10.1186/s12933-020-01175-5. PubMed DOI PMC
Ceron C., Castro M., Rizzi E., Montenegro M., Fontana V., Salgado M., Gerlach R., Tanus-Santos J. Spironolactone and hydrochlorothiazide exert antioxidant effects and reduce vascular matrix metalloproteinase-2 activity and expression in a model of renovascular hypertension. Br. J. Pharmacol. 2010;160:77–87. doi: 10.1111/j.1476-5381.2010.00678.x. PubMed DOI PMC
Mason T., Coelho-Filho O.R., Verma S., Chowdhury B., Zuo F., Quan A., Thorpe K.E., Bonneau C., Teoh H., Gilbert R.E., et al. Empagliflozin Reduces Myocardial Extracellular Volume in Patients With Type 2 Diabetes and Coronary Artery Disease. JACC Cardiovasc. Imaging. 2021;14:1164–1173. doi: 10.1016/j.jcmg.2020.10.017. PubMed DOI
Nassif M.E., Windsor S.L., Tang F., Husain M., Inzucchi S.E., McGuire D.K., Pitt B., Scirica B.M., Austin B., Fong M.W., et al. Dapagliflozin effects on lung fluid volumes in patients with heart failure and reduced ejection fraction: Results from the DEFINE-HF trial. Diabetes Obes. Metab. 2021;23:1426–1430. doi: 10.1111/dom.14352. PubMed DOI
Jürgens M., Schou M., Hasbak P., Kjær A., Wolsk E., Zerahn B., Wiberg M., Brandt-Jacobsen N.H., Gæde P., Rossing P., et al. Effects of Empagliflozin on Myocardial Flow Reserve in Patients With Type 2 Diabetes Mellitus: The SIMPLE Trial. J. Am. Heart Assoc. 2021;10:e020418. doi: 10.1161/JAHA.120.020418. PubMed DOI PMC
Kalra S., Jain A., Ved J., Unnikrishnan A.G. Sodium-glucose cotransporter 2 inhibition and health benefits: The Robin Hood effect. Indian J. Endocrinol. Metab. 2016;20:725–729. doi: 10.4103/2230-8210.183826. PubMed DOI PMC
Nirengi S., da Silva C.P.V., Stanford K.I. Disruption of energy utilization in diabetic cardiomyopathy; a mini review. Curr. Opin. Pharmacol. 2020;54:82–90. doi: 10.1016/j.coph.2020.08.015. PubMed DOI PMC
Lahnwong S., Palee S., Apaijai N., Sriwichaiin S., Kerdphoo S., Jaiwongkam T., Chattipakorn S.C., Chattipakorn N. Acute dapagliflozin administration exerts cardioprotective effects in rats with cardiac ischemia/reperfusion injury. Cardiovasc. Diabetol. 2020;19:91. doi: 10.1186/s12933-020-01066-9. PubMed DOI PMC
Bouchi R., Terashima M., Sasahara Y., Asakawa M., Fukuda T., Takeuchi T., Nakano Y., Murakami M., Minami I., Izumiyama H., et al. Luseogliflozin reduces epicardial fat accumulation in patients with type 2 diabetes: A pilot study. Cardiovasc. Diabetol. 2017;16:32. doi: 10.1186/s12933-017-0516-8. PubMed DOI PMC
Mantovani A., Csermely A., Petracca G., Beatrice G., Corey K.E., Simon T.G., Byrne C.D., Targher G. Non-alcoholic fatty liver disease and risk of fatal and non-fatal cardiovascular events: An updated systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2021;6:903–913. doi: 10.1016/S2468-1253(21)00308-3. PubMed DOI
Coelho F.D.S., Borges-Canha M., von Hafe M., Neves J.S., Vale C., Leite A.R., Carvalho D., Leite-Moreira A. Effects of sodium-glucose co-transporter 2 inhibitors on liver parameters and steatosis: A meta-analysis of randomized clinical trials. Diabetes Metab. Res. Rev. 2021;37:e3413. doi: 10.1002/dmrr.3413. PubMed DOI
Kuchay M.S., Krishan S., Mishra S.K., Farooqui K.J., Singh M.K., Wasir J.S., Bansal B., Kaur P., Jevalikar G., Gill H.K., et al. Effect of Empagliflozin on Liver Fat in Patients With Type 2 Diabetes and Nonalcoholic Fatty Liver Disease: A Randomized Controlled Trial (E-LIFT Trial) Diabetes Care. 2018;41:1801–1808. doi: 10.2337/dc18-0165. PubMed DOI
Latva-Rasku A., Honka M.J., Kullberg J., Mononen N., Lehtimäki T., Saltevo J., Kirjavainen A.K., Saunavaara V., Iozzo P., Johansson L., et al. The SGLT2 Inhibitor Dapagliflozin Reduces Liver Fat but Does Not Affect Tissue Insulin Sensitivity: A Randomized, Double-Blind, Placebo-Controlled Study With 8-Week Treatment in Type 2 Diabetes Patients. Diabetes Care. 2019;42:931–937. doi: 10.2337/dc18-1569. PubMed DOI
Lv Q., Le L., Xiang J., Jiang B., Chen S., Xiao P. Liver Transcriptomic Reveals Novel Pathways of Empagliflozin Associated With Type 2 Diabetic Rats. Front. Endocrinol. 2020;11:111. doi: 10.3389/fendo.2020.00111. PubMed DOI PMC
Tahara A., Takasu T. Therapeutic Effects of SGLT2 Inhibitor Ipragliflozin and Metformin on NASH in Type 2 Diabetic Mice. Endocr. Res. 2020;45:147–161. doi: 10.1080/07435800.2020.1713802. PubMed DOI
Hüttl M., Markova I., Miklankova D., Zapletalova I., Poruba M., Haluzik M., Vaněčkova I., Malinska H. In a Prediabetic Model, Empagliflozin Improves Hepatic Lipid Metabolism Independently of Obesity and before Onset of Hyperglycemia. Int. J. Mol. Sci. 2021;22:11513. doi: 10.3390/ijms222111513. PubMed DOI PMC
Li W., Liu J., Cai J., Zhang X.J., Zhang P., She Z.G., Chen S., Li H. NAFLD as a continuous driver in the whole spectrum of vascular disease. J. Mol. Cell. Cardiol. 2022;163:118–132. doi: 10.1016/j.yjmcc.2021.10.007. PubMed DOI
Ly J.P., Onay T., Sison K., Sivaskandarajah G., Sabbisetti V., Li L., Bonventre J.V., Flenniken A., Paragas N., Barasch J.M., et al. The Sweet Pee model for Sglt2 mutation. J. Am. Soc. Nephrol. 2011;22:113–123. doi: 10.1681/ASN.2010080888. PubMed DOI PMC
Nasa P., Chaudhary S., Shrivastava P.K., Singh A. Euglycemic diabetic ketoacidosis: A missed diagnosis. World J. Diabetes. 2021;12:514–523. doi: 10.4239/wjd.v12.i5.514. PubMed DOI PMC
Lim V.G., He H., Lachlan T., Ng G.A., Kyrou I., Randeva H.S., Osman F. Impact of sodium-glucose co-transporter inhibitors on cardiac autonomic function and mortality: No time to die. Europace. 2022 doi: 10.1093/europace/euab321. PubMed DOI
Bonora B.M., Raschi E., Avogaro A., Fadini G.P. SGLT-2 inhibitors and atrial fibrillation in the Food and Drug Administration adverse event reporting system. Cardiovasc. Diabetol. 2021;20:39. doi: 10.1186/s12933-021-01243-4. PubMed DOI PMC
Rosenstock J., Jelaska A., Zeller C., Kim G., Broedl U.C., Woerle H.J., EMPA-REG BASALTM Trial Investigators Impact of empagliflozin added on to basal insulin in type 2 diabetes inadequately controlled on basal insulin: A 78-week randomized, double-blind, placebo-controlled trial. Diabetes Obes. Metab. 2015;17:936–948. doi: 10.1111/dom.12503. PubMed DOI PMC
Wilding J.P., Woo V., Rohwedder K., Sugg J., Parikh S., Group D.S. Dapagliflozin in patients with type 2 diabetes receiving high doses of insulin: Efficacy and safety over 2 years. Diabetes Obes. Metab. 2014;16:124–136. doi: 10.1111/dom.12187. PubMed DOI
Nyirjesy P., Sobel J.D., Fung A., Mayer C., Capuano G., Ways K., Usiskin K. Genital mycotic infections with canagliflozin, a sodium glucose co-transporter 2 inhibitor, in patients with type 2 diabetes mellitus: A pooled analysis of clinical studies. Curr. Med. Res. Opin. 2014;30:1109–1119. doi: 10.1185/03007995.2014.890925. PubMed DOI
Lou Y., Yu Y., Duan J., Bi S., Swe K.N.C., Xi Z., Gao Y., Zhou Y., Nie X., Liu W. Sodium-glucose cotransporter 2 inhibitors and fracture risk in patients with type 2 diabetes mellitus: A meta-analysis of randomized controlled trials. Ther. Adv. Chronic. Dis. 2020;11:2040622320961599. doi: 10.1177/2040622320961599. PubMed DOI PMC
Zhang Y.S., Zheng Y.D., Yuan Y., Chen S.C., Xie B.C. Effects of Anti-Diabetic Drugs on Fracture Risk: A Systematic Review and Network Meta-Analysis. Front. Endocrinol. 2021;12:735824. doi: 10.3389/fendo.2021.735824. PubMed DOI PMC
See R.M., Teo Y.N., Teo Y.H., Syn N.L., Yip A.S.Y., Leong S., Wee C.F., Cheong A.J.Y., Lee C.H., Chan M.Y., et al. Effects of Sodium-Glucose Cotransporter 2 on Amputation Events: A Systematic Review and Meta-Analysis of Randomized-Controlled Trials. Pharmacology. 2022;107:123–130. doi: 10.1159/000520903. PubMed DOI PMC
Arnott C., Huang Y., Neuen B.L., Di Tanna G.L., Cannon C.P., Oh R., Edwards R., Kavalam M., Rosenthal N., Perkovic V., et al. The effect of canagliflozin on amputation risk in the CANVAS program and the CREDENCE trial. Diabetes Obes. Metab. 2020;22:1753–1766. doi: 10.1111/dom.14091. PubMed DOI
Berlowitz D.R., Breaux-Shropshire T., Foy C.G., Gren L.H., Kazis L., Lerner A.J., Newman J.C., Powell J.R., Riley W.T., Rosman R., et al. Hypertension Treatment and Concern About Falling: Baseline Data from the Systolic Blood Pressure Intervention Trial. J. Am. Geriatr. Soc. 2016;64:2302–2306. doi: 10.1111/jgs.14441. PubMed DOI PMC
Nassif M.E., Windsor S.L., Borlaug B.A., Kitzman D.W., Shah S.J., Tang F., Khariton Y., Malik A.O., Khumri T., Umpierrez G., et al. The SGLT2 inhibitor dapagliflozin in heart failure with preserved ejection fraction: A multicenter randomized trial. Nat. Med. 2021;27:1954–1960. doi: 10.1038/s41591-021-01536-x. PubMed DOI PMC
Bouchi R., Sonoda N., Itoh J., Ono Y., Fukuda T., Takeuchi T., Kishimoto J., Yamada T., Ogawa Y. Effects of intensive exercise combined with dapagliflozin on body composition in patients with type 2 diabetes: A randomized controlled trial. Endocr. J. 2021;68:329–343. doi: 10.1507/endocrj.EJ20-0599. PubMed DOI
Prentice A.M. Early influences on human energy regulation: Thrifty genotypes and thrifty phenotypes. Physiol. Behav. 2005;86:640–645. doi: 10.1016/j.physbeh.2005.08.055. PubMed DOI