Non-stomatal processes reduce gross primary productivity in temperate forest ecosystems during severe edaphic drought

. 2020 Oct 26 ; 375 (1810) : 20190527. [epub] 20200907

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32892725

Severe drought events are known to cause important reductions of gross primary productivity (GPP) in forest ecosystems. However, it is still unclear whether this reduction originates from stomatal closure (Stomatal Origin Limitation) and/or non-stomatal limitations (Non-SOL). In this study, we investigated the impact of edaphic drought in 2018 on GPP and its origin (SOL, NSOL) using a dataset of 10 European forest ecosystem flux towers. In all stations where GPP reductions were observed during the drought, these were largely explained by declines in the maximum apparent canopy scale carboxylation rate VCMAX,APP (NSOL) when the soil relative extractable water content dropped below around 0.4. Concurrently, we found that the stomatal slope parameter (G1, related to SOL) of the Medlyn et al. unified optimization model linking vegetation conductance and GPP remained relatively constant. These results strengthen the increasing evidence that NSOL should be included in stomatal conductance/photosynthesis models to faithfully simulate both GPP and water fluxes in forest ecosystems during severe drought. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.

Zobrazit více v PubMed

Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J. 2014. Global warming and changes in drought. Nat. Clim. Change 4, 17–22. (10.1038/nclimate2067) DOI

Vogel M, Zscheischler J, Wartenburger R, Dee D, Seneviratne S. 2019. Concurrent 2018 hot extremes across northern hemisphere due to human-induced climate change. Earths Future 7, 692–703. (10.1029/2019EF001189) PubMed DOI PMC

Toreti A, et al. 2019. The exceptional 2018 European water seesaw calls for action on adaptation. Earths Future 7, 652–663. (10.1029/2019EF001170) DOI

Ciais P. et al. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533. (10.1038/nature03972) PubMed DOI

Granier A, et al. 2007. Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agric. For. Meteorol. 143, 123–145. (10.1016/j.agrformet.2006.12.004) DOI

Reichstein M, et al. 2007. Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: a joint flux tower, remote sensing and modelling analysis. Glob. Change Biol. 13, 634–651. (10.1111/j.1365-2486.2006.01224.x) DOI

Sippel S, Reichstein M, Ma X, Mahecha MD, Lange H, Flach M, Frank D. 2018. Drought, heat, and the carbon cycle: a review. Curr. Clim. Change Rep. 4, 266–286. (10.1007/s40641-018-0103-4) DOI

Reichstein M, et al. 2002. Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean evergreen sites: revision of current hypotheses? Glob. Change Biol. 8, 999–1017. (10.1046/j.1365-2486.2002.00530.x) DOI

Xu L, Baldocchi DD. 2003. Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiol. 23, 865–877. (10.1093/treephys/23.13.865) PubMed DOI

Zhou S, Duursma RA, Medlyn BE, Kelly JWG, Prentice IC. 2013. How should we model plant responses to drought? An analysis of stomatal and non-stomatal responses to water stress. Agric. For. Meteorol. 182–183, 204–214. (10.1016/j.agrformet.2013.05.009) DOI

Egea G, Verhoef A, Vidale PL. 2011. Towards an improved and more flexible representation of water stress in coupled photosynthesis–stomatal conductance models. Agric. For. Meteorol. 151, 1370–1384. (10.1016/j.agrformet.2011.05.019) DOI

Migliavacca M, et al. 2011. Semiempirical modeling of abiotic and biotic factors controlling ecosystem respiration across eddy covariance sites. Glob. Change Biol. 17, 390–409. (10.1111/j.1365-2486.2010.02243.x) DOI

Reichstein M, et al. 2003. Inverse modeling of seasonal drought effects on canopy CO2/H2O exchange in three Mediterranean ecosystems. J. Geophys. Res. Atmospheres 108, 4726 (10.1029/2003JD003430) DOI

Knauer J, Zaehle S, Kauwe MGD, Bahar NHA, Evans JR, Medlyn BE, Reichstein M, Werner C. 2019. Effects of mesophyll conductance on vegetation responses to elevated CO2 concentrations in a land surface model. Glob. Change Biol. 25, 1820–1838. (10.1111/gcb.14604) PubMed DOI PMC

Keenan T, Sabate S, Gracia C. 2010. The importance of mesophyll conductance in regulating forest ecosystem productivity during drought periods. Glob. Change Biol. 16, 1019–1034. (10.1111/j.1365-2486.2009.02017.x) DOI

Zhou S-X, Prentice IC, Medlyn BE. 2019. Bridging drought experiment and modeling: representing the differential sensitivities of leaf gas exchange to drought. Front. Plant Sci. 9, e01965 (10.3389/fpls.2018.01965) PubMed DOI PMC

Rogers A, et al. 2017. A roadmap for improving the representation of photosynthesis in Earth system models. New Phytol. 213, 22–42. (10.1111/nph.14283) PubMed DOI

Chaves MM, Flexas J, Pinheiro C. 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann. Bot. 103, 551–560. (10.1093/aob/mcn125) PubMed DOI PMC

Medlyn BE, et al. 2016. Using models to guide field experiments: a priori predictions for the CO2 response of a nutrient- and water-limited native eucalypt woodland. Glob. Change Biol. 22, 2834–2851. (10.1111/gcb.13268) PubMed DOI

Drake JE, et al. 2017. Stomatal and non-stomatal limitations of photosynthesis for four tree species under drought: a comparison of model formulations. Agric. For. Meteorol. 247, 454–466. (10.1016/j.agrformet.2017.08.026) DOI

Farquhar GD, von Caemmerer S, Berry JA. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90. (10.1007/BF00386231) PubMed DOI

Cowan IR, Farquhar GD. 1977. Stomatal function in relation to leaf metabolism and environment. Symp. Soc. Exp. Biol. 31, 471–505. PubMed

Manzoni S, Vico G, Katul G, Fay PA, Polley W, Palmroth S, Porporato A. 2011. Optimizing stomatal conductance for maximum carbon gain under water stress: a meta-analysis across plant functional types and climates. Funct. Ecol. 25, 456–467. (10.1111/j.1365-2435.2010.01822.x) DOI

Medlyn BE, et al. 2011. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Change Biol. 17, 2134–2144. (10.1111/j.1365-2486.2010.02375.x) DOI

Ball JT, Woodrow IE, Berry JA. 1987. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In Progress in Photosynthesis Research: Vol. 4 Proc. VIIth Int. Congress on Photosynthesis, Providence, Rhode Island, USA, 10–15 August 1986 (ed. Biggins J.), pp. 221–224. Dordrecht, The Netherlands: Springer.

Leuning R. 1995. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ. 18, 339–355. (10.1111/j.1365-3040.1995.tb00370.x) DOI

Knauer J, et al. 2018. Towards physiologically meaningful water-use efficiency estimates from eddy covariance data. Glob. Change Biol. 24, 694–710. (10.1111/gcb.13893) PubMed DOI

Lin Y-S, et al. 2015. Optimal stomatal behaviour around the world. Nat. Clim. Change 5, 459–464. (10.1038/nclimate2550) DOI

Medlyn BE, et al. 2017. How do leaf and ecosystem measures of water-use efficiency compare? New Phytol. 216, 758–770. (10.1111/nph.14626) PubMed DOI

Tarin T, Nolan RH, Medlyn BE, Cleverly J, Eamus D. 2019. Water-use efficiency in a semi-arid woodland with high rainfall variability. Glob. Change Biol. 26, 496–508. (10.1111/gcb.14866) PubMed DOI

Knauer J, El-Madany TS, Zaehle S, Migliavacca M. 2018. Bigleaf—an R package for the calculation of physical and physiological ecosystem properties from eddy covariance data. PLoS ONE 13, e0201114 (10.1371/journal.pone.0201114) PubMed DOI PMC

Monteith JL. 1965. Evaporation and environment. Symp. Soc. Exp. Biol. 19, 205–234. PubMed

Kosugi Y, Takanashi S, Ueyama M, Ohkubo S, Tanaka H, Matsumoto K, Yoshifuji N, Ataka M, Sakabe A. 2013. Determination of the gas exchange phenology in an evergreen coniferous forest from 7 years of eddy covariance flux data using an extended big-leaf analysis. Ecol. Res. 28, 373–385. (10.1007/s11284-012-1019-4) DOI

Granier A, Bréda N, Biron P, Villette S. 1999. A lumped water balance model to evaluate duration and intensity of drought constraints in forest stands. Ecol. Model. 116, 269–283. (10.1016/S0304-3800(98)00205-1) DOI

Drought 2018 Team, ICOS Ecosystem Thematic Centre. 2019. Drought-2018 ecosystem eddy covariance flux product in FLUXNET-Archive format - release 2019-1 (Version 1.0). ICOS Carbon Portal (doi:10.18160/PZDK-EF78)

Gielen B, De Vos B, Campioli M, Neirynck J, Papale D, Verstraeten A, Ceulemans R, Janssens IA. 2013. Biometric and eddy covariance-based assessment of decadal carbon sequestration of a temperate Scots pine forest. Agric. For. Meteorol. 174–175, 135–143. (10.1016/j.agrformet.2013.02.008) DOI

Aubinet M, Hurdebise Q, Chopin H, Debacq A, De Ligne A, Heinesch B, Manise T, Vincke C. 2018. Inter-annual variability of Net Ecosystem Productivity for a temperate mixed forest: a predominance of carry-over effects? Agric . For. Meteorol. 262, 340–353. (10.1016/j.agrformet.2018.07.024) DOI

Acosta M, Darenova E, Dušek J, Pavelka M. 2017. Soil carbon dioxide fluxes in a mixed floodplain forest in the Czech Republic. Eur. J. Soil Biol. 82, 35–42. (10.1016/j.ejsobi.2017.08.006) DOI

McGloin R, Šigut L, Havránková K, Dušek J, Pavelka M, Sedlák P. 2018. Energy balance closure at a variety of ecosystems in Central Europe with contrasting topographies. Agric. For. Meteorol. 248, 418–431. (10.1016/j.agrformet.2017.10.003) DOI

Krupková L, Havránková K, Krejza J, Sedlák P, Marek MV. 2019. Impact of water scarcity on spruce and beech forests. J. For. Res. 30, 899–909. (10.1007/s11676-018-0642-5) DOI

Schrumpf M, Kaiser K, Guggenberger G, Persson T, Kögel-Knabner I, Schulze E-D. 2013. Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals. Biogeosciences 10, 1675–1691. (10.5194/bg-10-1675-2013) DOI

Herbst M, Mund M, Tamrakar R, Knohl A. 2015. Differences in carbon uptake and water use between a managed and an unmanaged beech forest in central Germany. For. Ecol. Manag. 355, 101–108. (10.1016/j.foreco.2015.05.034) DOI

Pilegaard K, Ibrom A, Courtney MS, Hummelshøj P, Jensen NO. 2011. Increasing net CO2 uptake by a Danish beech forest during the period from 1996 to 2009. Agric. For. Meteorol. 151, 934–946. (10.1016/j.agrformet.2011.02.013) DOI

Moreaux V, Lamaud E, Bosc A, Bonnefond J-M, Medlyn BE, Loustau D. 2011. Paired comparison of water, energy and carbon exchanges over two young maritime pine stands (Pinus pinaster Ait.): effects of thinning and weeding in the early stage of tree growth. Tree Physiol. 31, 903–921. (10.1093/treephys/tpr048) PubMed DOI

Granier A, Bréda N, Longdoz B, Gross P, Ngao J. 2008. Ten years of fluxes and stand growth in a young beech forest at Hesse, North-eastern France. Ann. For. Sci. 65, 1 (10.1051/forest:2008052) DOI

Aubinet M, et al. 2000. Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Adv. Ecol. Res. 30, 113–175. (10.1016/S0065-2504(08)60018-5) DOI

Papale D, et al. 2006. Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences 3, 571–583. (10.5194/bg-3-571-2006) DOI

Reichstein M, et al. 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob. Change Biol. 11, 1424–1439. (10.1111/j.1365-2486.2005.001002.x) DOI

Héroult A, Lin Y-S, Bourne A, Medlyn BE, Ellsworth DS. 2013. Optimal stomatal conductance in relation to photosynthesis in climatically contrasting Eucalyptus species under drought. Plant Cell Environ. 36, 262–274. (10.1111/j.1365-3040.2012.02570.x) PubMed DOI

Wang S, Yang Y, Trishchenko AP. 2009. Assessment of canopy stomatal conductance models using flux measurements. Ecol. Model. 220, 2115–2118. (10.1016/j.ecolmodel.2009.04.044) DOI

Oosterbaan R, Sharma DP, Singh K, Rao KG. 1990. Crop production and soil salinity: evaluation of field data from India by segmented linear regression. In Proc. Symp. Land Drainage for Salinity Control in Arid and Semi-Arid Regions, vol. 3 (ed. HM Amer), pp. 373–383. Cairo, Egypt: Nubar Printing House.

Bernacchi CJ, Singsaas EL, Pimentel C, Portis AR Jr, Long SP. 2001. Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ. 24, 253–259. (10.1111/j.1365-3040.2001.00668.x) DOI

Farquhar GD, Sharkey TD. 1982. Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol. 33, 317–345. (10.1146/annurev.pp.33.060182.001533) DOI

Anderegg WRL, et al. 2017. Plant water potential improves prediction of empirical stomatal models. PLoS ONE 12, e0185481 (10.1371/journal.pone.0185481) PubMed DOI PMC

Sellin A, Eensalu E, Niglas A. 2010. Is distribution of hydraulic constraints within tree crowns reflected in photosynthetic water-use efficiency? An example of Betula pendula. Ecol. Res. 25, 173–183. (10.1007/s11284-009-0641-2) DOI

Kelliher FM, Leuning R, Raupach MR, Schulze E-D. 1995. Maximum conductances for evaporation from global vegetation types. Agric. For. Meteorol. 73, 1–16. (10.1016/0168-1923(94)02178-M) DOI

Wilson K, et al. 2002. Energy balance closure at FLUXNET sites. Agric. For. Meteorol. 113, 223–243. (10.1016/S0168-1923(02)00109-0) DOI

Graf A, et al. 2020. Altered energy partitioning across terrestrial ecosystems in the European drought year 2018 Phil. Trans. R. Soc. B 375, 20190524 (10.1098/rstb.2019.0524) PubMed DOI PMC

Keenan T, García R, Friend AD, Zaehle S, Gracia C, Sabate S. 2009. Improved understanding of drought controls on seasonal variation in Mediterranean forest canopy CO2 and water fluxes through combined in situ measurements and ecosystem modelling. Biogeosciences 6, 1423–1444. (10.5194/bg-6-1423-2009) DOI

Chen B, Chen JM, Baldocchi DD, Liu Y, Wang S, Zheng T, Black TA, Croft H. 2019. Including soil water stress in process-based ecosystem models by scaling down maximum carboxylation rate using accumulated soil water deficit. Agric. For. Meteorol. 276–277, 107649 (10.1016/j.agrformet.2019.107649) DOI

de Beeck M Op, Löw M, Deckmyn G, Ceulemans R. 2010. A comparison of photosynthesis-dependent stomatal models using twig cuvette field data for adult beech (Fagus sylvatica L.). Agric. For. Meteorol. 150, 531–540. (10.1016/j.agrformet.2010.01.018) DOI

Hentschel R, Hommel R, Poschenrieder W, Grote R, Holst J, Biernath C, Gessler A, Priesack E. 2016. Stomatal conductance and intrinsic water use efficiency in the drought year 2003: a case study of European beech. Trees 30, 153–174. (10.1007/s00468-015-1284-2) DOI

Galmés J, Medrano H, Flexas J. 2007. Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytol. 175, 81–93. (10.1111/j.1469-8137.2007.02087.x) PubMed DOI

Keenan T, Sabate S, Gracia C. 2010. Soil water stress and coupled photosynthesis–conductance models: bridging the gap between conflicting reports on the relative roles of stomatal, mesophyll conductance and biochemical limitations to photosynthesis. Agric. For. Meteorol. 150, 443–453. (10.1016/j.agrformet.2010.01.008) DOI

Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD. 2004. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol. 6, 269–279. (10.1055/s-2004-820867) PubMed DOI

Flexas J, et al. 2012. Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Sci. 193–194, 70–84. (10.1016/j.plantsci.2012.05.009) PubMed DOI

Lawlor DW, Tezara W. 2009. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Ann. Bot. 103, 561–579. (10.1093/aob/mcn244) PubMed DOI PMC

Mäkelä A, Berninger F, Hari P. 1996. Optimal control of gas exchange during drought: theoretical analysis. Ann. Bot. 77, 461–468. (10.1006/anbo.1996.0056) DOI

Buckley TN. 2019. How do stomata respond to water status? New Phytol. 224, 21–36. (10.1111/nph.15899) PubMed DOI

Flexas J, Medrano H. 2002. Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann. Bot. 89, 183–189. (10.1093/aob/mcf027) PubMed DOI PMC

Tuzet A, Perrier A, Leuning R. 2003. A coupled model of stomatal conductance, photosynthesis and transpiration. Plant Cell Environ. 26, 1097–1116. (10.1046/j.1365-3040.2003.01035.x) DOI

Tuzet A, Granier A, Betsch P, Peiffer M, Perrier A. 2017. Modelling hydraulic functioning of an adult beech stand under non-limiting soil water and severe drought condition. Ecol. Model. 348, 56–77. (10.1016/j.ecolmodel.2017.01.007) DOI

Dewar R, Mauranen A, Mäkelä A, Hölttä T, Medlyn B, Vesala T. 2018. New insights into the covariation of stomatal, mesophyll and hydraulic conductances from optimization models incorporating nonstomatal limitations to photosynthesis. New Phytol. 217, 571–585. (10.1111/nph.14848) PubMed DOI

Sperry JS, Wang Y, Wolfe BT, Mackay DS, Anderegg WRL, McDowell NG, Pockman WT. 2016. Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits. New Phytol. 212, 577–589. (10.1111/nph.14059) PubMed DOI

Gimeno TE, Saavedra N, Ogée J, Medlyn BE, Wingate L. 2019. A novel optimization approach incorporating non-stomatal limitations predicts stomatal behaviour in species from six plant functional types. J. Exp. Bot. 70, 1639–1651. (10.1093/jxb/erz020) PubMed DOI PMC

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.c.5077590

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...