Altered energy partitioning across terrestrial ecosystems in the European drought year 2018
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32892732
PubMed Central
PMC7485107
DOI
10.1098/rstb.2019.0524
Knihovny.cz E-zdroje
- Klíčová slova
- eddy covariance, energy balance, evapotranspiration, heat flux, net carbon uptake, water-use efficiency,
- MeSH
- atmosféra analýza MeSH
- farmy * MeSH
- klimatické změny * MeSH
- lesy * MeSH
- mokřady * MeSH
- období sucha * MeSH
- pastviny * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
Drought and heat events, such as the 2018 European drought, interact with the exchange of energy between the land surface and the atmosphere, potentially affecting albedo, sensible and latent heat fluxes, as well as CO2 exchange. Each of these quantities may aggravate or mitigate the drought, heat, their side effects on productivity, water scarcity and global warming. We used measurements of 56 eddy covariance sites across Europe to examine the response of fluxes to extreme drought prevailing most of the year 2018 and how the response differed across various ecosystem types (forests, grasslands, croplands and peatlands). Each component of the surface radiation and energy balance observed in 2018 was compared to available data per site during a reference period 2004-2017. Based on anomalies in precipitation and reference evapotranspiration, we classified 46 sites as drought affected. These received on average 9% more solar radiation and released 32% more sensible heat to the atmosphere compared to the mean of the reference period. In general, drought decreased net CO2 uptake by 17.8%, but did not significantly change net evapotranspiration. The response of these fluxes differed characteristically between ecosystems; in particular, the general increase in the evaporative index was strongest in peatlands and weakest in croplands. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.
Bioclimatology University of Göttingen Büsgenweg 2 37077 Göttingen Germany
Chair of Meteorology Technische Universität Dresden Pienner Straße 23 01737 Tharandt Germany
Climate Change Unit Environmental Protection Agency of Aosta Valley Italy
Climate System Research Unit Finnish Meteorological Institute PO Box 503 00101 Helsinki Finland
CNR Institute for Agricultural and Forest Systems Via Patacca 85 80040 Ercolano Italy
Department of Environmental Systems Science ETH Zurich Universitätstraße 2 8092 Zurich Switzerland
Department of Geography University of Zurich Winterthurerstraße 190 8057 Zurich Switzerland
Environmental Meteorology University of Trier Behringstraße 21 54296 Trier Germany
European Commission Joint Research Centre Ispra Italy
Institute of Physics and Meteorology University of Hohenheim 70593 Stuttgart Germany
ISPA Bordeaux Sciences Agro INRAE 33140 Villenave d'Ornon France
National Research Council Institute of Bioeconomy Via dei Taurini 19 00100 Rome Italy
Research Institute for Nature and Forest INBO Havenlaan 88 Box 73 1000 Brussels Belgium
School of Forest Sciences University of Eastern Finland Yliopistokatu 7 80101 Joensuu Finland
University of Antwerp Plants and Ecosystems Universiteitsplein 1 2610 Wilrijk Belgium
Zobrazit více v PubMed
Ciais P, et al. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533. (10.1038/nature03972) PubMed DOI
Reichstein M, et al. 2007. Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: a joint flux tower, remote sensing and modelling analysis. Glob. Change Biol. 13, 634–651. (10.1111/j.1365-2486.2006.01224.x) DOI
Lorenzini G, Nali C, Pellegrini E. 2014. Summer heat waves, agriculture, forestry and related issues: an introduction (Editorial). Agrochimica 58, 3–19.
Copernicus Climate Change Service. 2019. European State of the Climate 2018. See https://climate.copernicus.eu/ESOTC/2018.
Copernicus Climate Change Service. 2020. European State of the Climate 2019. See https://climate.copernicus.eu/ESOTC/2019.
Gourlez de la Motte L, et al. 2020. Non-stomatal processes reduce gross primary productivity in temperate forest ecosystems during severe edaphic drought. Phil. Trans. R. Soc. B 375, 20190527. (10.1098/rstb.2019.0527) PubMed DOI PMC
Teuling AJ, et al. 2010. Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci. 3, 722–727. (10.1038/ngeo950) DOI
Swinbank WC. 1951. The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere. J. Meteorol. 8, 135–145. (10.1175/1520-0469(1951)008<0135:tmovto>2.0.co;2) DOI
Drought 2018 Team and ICOS Ecosystem Thermatic Centre 2020. Drought-2018 ecosystem eddy covariance flux product for 52 stations in FLUXNET-Archive format. ( ) DOI
Franz D, et al. 2018. Towards long-term standardised carbon and greenhouse gas observations for monitoring Europe's terrestrial ecosystems: a review. Int. Agrophys. 32, 439 (10.1515/intag-2017-0039) DOI
Mauder M, Cuntz M, Drüe C, Graf A, Rebmann C, Schmid H-P, Schmidt M, Steinbrecher R. 2013. A quality assessment strategy for long-term eddy-covariance measurements. Agric. For. Meteorol. 169, 122–135. (10.1016/j.agrformet.2012.09.006) DOI
Sabbatini S, et al. 2018. Eddy covariance raw data processing for CO2 and energy fluxes calculation at ICOS ecosystem stations. Int. Agrophys. 32, 495 (10.1515/intag-2017-0043) DOI
Wutzler T, Lucas-Moffat A, Migliavacca M, Knauer J, Sickel K, Sigut L, Menzer O, Reichstein M. 2018. Basic and extensible post-processing of eddy covariance flux data with REddyProc. Biogeosciences 15, 5015–5030. (10.5194/bg-15-5015-2018) DOI
Blanken PD, Black TA, Yang PC, Neumann HH, Nesic Z, Staebler R, den Hartog G, Novak MD, Lee X. 1997. Energy balance and canopy conductance of a boreal aspen forest: partitioning overstory and understory components. J. Geophys. Res. Atmos. 102, 28 915–28 927. (10.1029/97jd00193) DOI
Meyers TP, Hollinger SE. 2004. An assessment of storage terms in the surface energy balance of maize and soybean. Agric. For. Meteorol. 125, 105–115. (10.1016/j.agrformet.2004.03.001) DOI
Eshonkulov R, Poyda A, Ingwersen J, Wizemann HD, Weber TKD, Kremer P, Hogy P, Pulatov A, Streck T. 2019. Evaluating multi-year, multi-site data on the energy balance closure of eddy-covariance flux measurements at cropland sites in southwestern Germany. Biogeosciences 16, 521–540. (10.5194/bg-16-521-2019) DOI
Oncley SP, et al. 2007. The energy balance experiment EBEX-2000. Part I: overview and energy balance. Bound.-Layer Meteor. 123, 1–28. (10.1007/s10546-007-9161-1) DOI
Leuning R, van Gorsel E, Massman WJ, Isaac PR. 2012. Reflections on the surface energy imbalance problem. Agric. For. Meteorol. 156, 65–74. (10.1016/j.agrformet.2011.12.002) DOI
Allen RG, Pereira LS, Raes D, Smith M.. 1998. Crop evapotranspiration: guidelines for computing crop water requirements, 300 p. Rome, Italy: FAO.
Thornthwaite CW. 1948. An approach toward a rational classification of climate. Geogr. Rev. 38, 55–94. (10.2307/210739) DOI
Buras A, Rammig A, Zang CS. 2019. Quantifying impacts of the drought 2018 on European ecosystems in comparison to 2003. Biogeosci. Discuss. 2019, 1–23. (10.5194/bg-2019-286) DOI
Vicente-Serrano SM, Begueria S, Lorenzo-Lacruz J, Camarero JJ, Lopez-Moreno JI, Azorin-Molina C, Revuelto J, Moran-Tejeda E, Sanchez-Lorenzo A. 2012. Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interact. 16, 1–27. (10.1175/2012ei000434.1) DOI
Bastos A, et al. 2020. Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Science Advances 6, eaba2724. (10.1126/sciadv.aba2724) PubMed DOI PMC
Vicente-Serrano SM, Begueria S.. 2020. SPEI Global drought monitor. See https://spei.csic.es/map/maps.html.
Stoy PC, et al. 2013. A data-driven analysis of energy balance closure across FLUXNET research sites: the role of landscape scale heterogeneity. Agric. For. Meteorol . 171–172, 137–152. (10.1016/j.agrformet.2012.11.004). DOI
Wilson K, et al. 2002. Energy balance closure at FLUXNET sites. Agric. For. Meteorol. 113, 223–243. (10.1016/s0168-1923(02)00109-0) DOI
Foken T, Aubinet M, Finnigan JJ, Leclerc MY, Mauder M, Paw UKT. 2011. Results of a panel discussion about the energy balance closure correction for trace gases. Bull. Am. Meteorol. Soc. 92, ES13–ES18. (10.1175/2011BAMS3130.1) DOI
Budyko MI. 1974. Climate and life. New York, NY: Academic Press.
Williams CA, et al. 2012. Climate and vegetation controls on the surface water balance: synthesis of evapotranspiration measured across a global network of flux towers. Water Resour. Res. 48, W06523. (10.1029/2011wr011586) DOI
Nijp JJ, Metselaar K, Limpens J, Bartholomeus HM, Nilsson MB, Berendse F, van der Zee S. 2019. High-resolution peat volume change in a northern peatland: spatial variability, main drivers, and impact on ecohydrology. Ecohydrology 12, 17 (10.1002/eco.2114) DOI
Wolf S, et al. 2013. Contrasting response of grassland versus forest carbon and water fluxes to spring drought in Switzerland. Environ. Res. Lett. 8, 12 (10.1088/1748-9326/8/3/035007) DOI
Teuling AJ, et al. 2013. Evapotranspiration amplifies European summer drought. Geophys. Res. Lett. 40, 2071–2075. (10.1002/grl.50495) DOI
Kabat P, et al. 2004. Vegetation, water, humans and the climate: a new perspective on an Interactive system. Dordrecht, The Netherlands: Springer.
Betts RA. 2000. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408, 187–190. (10.1038/35041545) PubMed DOI
Rotenberg E, Yakir D. 2010. Contribution of semi-arid forests to the climate system. Science 327, 451–454. (10.1126/science.1179998) PubMed DOI
Ramonet M, et al. 2020. The fingerprint of the summer 2018 drought in Europe on ground-based atmospheric CO2 measurements. Phil. Trans. R. Soc. B 375, 20190513 (10.1098/rstb.2019.0513) PubMed DOI PMC
Thompson RL, et al. 2020. Changes in net ecosystem exchange over Europe during the 2018 drought based on atmospheric observations. Phil. Trans. R. Soc. B 375, 20190512 (10.1098/rstb.2019.0512) PubMed DOI PMC
Wohlfahrt G, et al. 2018. Sun-induced fluorescence and gross primary productivity during a heat wave. Sci. Rep. 8, 9 (10.1038/s41598-018-32602-z) PubMed DOI PMC
Stoy PC, et al. 2019. Reviews and syntheses: turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities. Biogeosciences 16, 3747–3775. (10.5194/bg-16-3747-2019) DOI
Beer C, et al. 2009. Temporal and among-site variability of inherent water use efficiency at the ecosystem level. Global Biogeochem. Cycles 23, 13 (10.1029/2008gb003233) DOI
Plant species as ecological engineers of microtopography in a temperate sedge-grass marsh
figshare
10.6084/m9.figshare.c.5105937