Altered energy partitioning across terrestrial ecosystems in the European drought year 2018

. 2020 Oct 26 ; 375 (1810) : 20190524. [epub] 20200907

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32892732

Drought and heat events, such as the 2018 European drought, interact with the exchange of energy between the land surface and the atmosphere, potentially affecting albedo, sensible and latent heat fluxes, as well as CO2 exchange. Each of these quantities may aggravate or mitigate the drought, heat, their side effects on productivity, water scarcity and global warming. We used measurements of 56 eddy covariance sites across Europe to examine the response of fluxes to extreme drought prevailing most of the year 2018 and how the response differed across various ecosystem types (forests, grasslands, croplands and peatlands). Each component of the surface radiation and energy balance observed in 2018 was compared to available data per site during a reference period 2004-2017. Based on anomalies in precipitation and reference evapotranspiration, we classified 46 sites as drought affected. These received on average 9% more solar radiation and released 32% more sensible heat to the atmosphere compared to the mean of the reference period. In general, drought decreased net CO2 uptake by 17.8%, but did not significantly change net evapotranspiration. The response of these fluxes differed characteristically between ecosystems; in particular, the general increase in the evaporative index was strongest in peatlands and weakest in croplands. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.

Bioclimatology University of Göttingen Büsgenweg 2 37077 Göttingen Germany

BioEcoAgro Joint Research Unit INRAE Université de Liège Université de Lille Université de Picardie Jules Verne 02000 Barenton Bugny France

Chair of Meteorology Technische Universität Dresden Pienner Straße 23 01737 Tharandt Germany

Climate Change Unit Environmental Protection Agency of Aosta Valley Italy

Climate System Research Unit Finnish Meteorological Institute PO Box 503 00101 Helsinki Finland

Climatology and Environmental Meteorology Institute of Geoecology Technische Universität Braunschweig Langer Kamp 19c 38106 Braunschweig Germany

CNR Institute for Agricultural and Forest Systems Via Patacca 85 80040 Ercolano Italy

Department for Landscape Ecology and Site Evaluation University of Rostock Justus von Liebig Weg 6 18059 Rostock Germany

Department of Agronomy Food Natural resources Animals and Environment University of Padova Viale dell'Università 16 35020 Legnaro Italy

Department of Biogeochemical Integration Max Planck Institute for Biogeochemistry Hans Knöll Straße 10 07745 Jena Germany

Department of Environmental Engineering Technical University of Denmark Bygningstorvet 115 2800 Lyngby Denmark

Department of Environmental Sciences Wageningen University and Research PO Box 47 6700 AA Wageningen The Netherlands

Department of Environmental Systems Science ETH Zurich Universitätstraße 2 8092 Zurich Switzerland

Department of Forest Ecology and Management Swedish University of Agricultural Sciences Skogsmarksgränd 17 90183 Umeå Sweden

Department of Geography University of Zurich Winterthurerstraße 190 8057 Zurich Switzerland

Department of Matter and Energy Fluxes Global Change Research Institute of the Czech Academy of Sciences Bělidla 986 4a 60300 Brno Czech Republic

Department of Physical Geography and Ecosystem Science Lund University Sölvegatan 12 22362 Lund Sweden

Environmental Meteorology University of Trier Behringstraße 21 54296 Trier Germany

Environmental Sciences Earth and Life Institute Université catholique de Louvain 1348 Louvain la Neuve Belgium

European Commission Joint Research Centre Ispra Italy

Helmholtz Centre for Environmental Research GmbH UFZ Department Computational Hydrosystems Permoserstraße 15 04318 Leipzig Germany

Institute for Atmospheric and Earth System Research Physics Faculty of Science University of Helsinki Gustaf Hällströmin katu 2B 00014 Helsinki Finland

Institute of Bio and Geosciences Agrosphere Forschungszentrum Jülich Wilhelm Johnen Straße 52428 Jülich Germany

Institute of Climate Smart Agriculture Johann Heinrich von Thünen Institute Bundesallee 65 38116 Braunschweig Germany

Institute of Crop Science and Plant Breeding Grass and Forage Science Organic Agriculture Christian Albrechts University Kiel Hermann Rodewald Straße 9 24118 Kiel Germany

Institute of Meteorology and Climate Research Atmospheric Environmental Research Karlsruhe Institute of Technology Campus Alpin Kreuzeckbahnstraße 19 82467 Garmisch Partenkirchen Germany

Institute of Physics and Meteorology University of Hohenheim 70593 Stuttgart Germany

Institute of Soil Science and Land Evaluation University of Hohenheim Emil Wolff Straße 27 70599 Stuttgart Germany

ISPA Bordeaux Sciences Agro INRAE 33140 Villenave d'Ornon France

Laboratory of Biocentology A N Severtsov Institute of Ecology and Evolution Russian Academy of Sciences Leninsky pr 33 Moscow 119071 Russia

National Research Council Institute of Bioeconomy Via dei Taurini 19 00100 Rome Italy

Remote Sensing and Geoinformatics German Research Centre for Geosciences Telegrafenberg 14473 Potsdam Germany

Research Institute for Nature and Forest INBO Havenlaan 88 Box 73 1000 Brussels Belgium

School of Forest Sciences University of Eastern Finland Yliopistokatu 7 80101 Joensuu Finland

Terra Teaching and Research Centre University of Liege Gembloux Agro Bio Tech Avenue de la Faculté 8 5030 Gembloux Belgium

Unité mixte de Recherche Silva Université de Lorraine AgroParisTech INRAE UMR Silva 54000 Nancy France

University of Antwerp Plants and Ecosystems Universiteitsplein 1 2610 Wilrijk Belgium

Zobrazit více v PubMed

Ciais P, et al. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533. (10.1038/nature03972) PubMed DOI

Reichstein M, et al. 2007. Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: a joint flux tower, remote sensing and modelling analysis. Glob. Change Biol. 13, 634–651. (10.1111/j.1365-2486.2006.01224.x) DOI

Lorenzini G, Nali C, Pellegrini E. 2014. Summer heat waves, agriculture, forestry and related issues: an introduction (Editorial). Agrochimica 58, 3–19.

Copernicus Climate Change Service. 2019. European State of the Climate 2018. See https://climate.copernicus.eu/ESOTC/2018.

Copernicus Climate Change Service. 2020. European State of the Climate 2019. See https://climate.copernicus.eu/ESOTC/2019.

Gourlez de la Motte L, et al. 2020. Non-stomatal processes reduce gross primary productivity in temperate forest ecosystems during severe edaphic drought. Phil. Trans. R. Soc. B 375, 20190527. (10.1098/rstb.2019.0527) PubMed DOI PMC

Teuling AJ, et al. 2010. Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci. 3, 722–727. (10.1038/ngeo950) DOI

Swinbank WC. 1951. The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere. J. Meteorol. 8, 135–145. (10.1175/1520-0469(1951)008<0135:tmovto>2.0.co;2) DOI

Drought 2018 Team and ICOS Ecosystem Thermatic Centre 2020. Drought-2018 ecosystem eddy covariance flux product for 52 stations in FLUXNET-Archive format. ( ) DOI

Franz D, et al. 2018. Towards long-term standardised carbon and greenhouse gas observations for monitoring Europe's terrestrial ecosystems: a review. Int. Agrophys. 32, 439 (10.1515/intag-2017-0039) DOI

Mauder M, Cuntz M, Drüe C, Graf A, Rebmann C, Schmid H-P, Schmidt M, Steinbrecher R. 2013. A quality assessment strategy for long-term eddy-covariance measurements. Agric. For. Meteorol. 169, 122–135. (10.1016/j.agrformet.2012.09.006) DOI

Sabbatini S, et al. 2018. Eddy covariance raw data processing for CO2 and energy fluxes calculation at ICOS ecosystem stations. Int. Agrophys. 32, 495 (10.1515/intag-2017-0043) DOI

Wutzler T, Lucas-Moffat A, Migliavacca M, Knauer J, Sickel K, Sigut L, Menzer O, Reichstein M. 2018. Basic and extensible post-processing of eddy covariance flux data with REddyProc. Biogeosciences 15, 5015–5030. (10.5194/bg-15-5015-2018) DOI

Blanken PD, Black TA, Yang PC, Neumann HH, Nesic Z, Staebler R, den Hartog G, Novak MD, Lee X. 1997. Energy balance and canopy conductance of a boreal aspen forest: partitioning overstory and understory components. J. Geophys. Res. Atmos. 102, 28 915–28 927. (10.1029/97jd00193) DOI

Meyers TP, Hollinger SE. 2004. An assessment of storage terms in the surface energy balance of maize and soybean. Agric. For. Meteorol. 125, 105–115. (10.1016/j.agrformet.2004.03.001) DOI

Eshonkulov R, Poyda A, Ingwersen J, Wizemann HD, Weber TKD, Kremer P, Hogy P, Pulatov A, Streck T. 2019. Evaluating multi-year, multi-site data on the energy balance closure of eddy-covariance flux measurements at cropland sites in southwestern Germany. Biogeosciences 16, 521–540. (10.5194/bg-16-521-2019) DOI

Oncley SP, et al. 2007. The energy balance experiment EBEX-2000. Part I: overview and energy balance. Bound.-Layer Meteor. 123, 1–28. (10.1007/s10546-007-9161-1) DOI

Leuning R, van Gorsel E, Massman WJ, Isaac PR. 2012. Reflections on the surface energy imbalance problem. Agric. For. Meteorol. 156, 65–74. (10.1016/j.agrformet.2011.12.002) DOI

Allen RG, Pereira LS, Raes D, Smith M.. 1998. Crop evapotranspiration: guidelines for computing crop water requirements, 300 p. Rome, Italy: FAO.

Thornthwaite CW. 1948. An approach toward a rational classification of climate. Geogr. Rev. 38, 55–94. (10.2307/210739) DOI

Buras A, Rammig A, Zang CS. 2019. Quantifying impacts of the drought 2018 on European ecosystems in comparison to 2003. Biogeosci. Discuss. 2019, 1–23. (10.5194/bg-2019-286) DOI

Vicente-Serrano SM, Begueria S, Lorenzo-Lacruz J, Camarero JJ, Lopez-Moreno JI, Azorin-Molina C, Revuelto J, Moran-Tejeda E, Sanchez-Lorenzo A. 2012. Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interact. 16, 1–27. (10.1175/2012ei000434.1) DOI

Bastos A, et al. 2020. Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Science Advances 6, eaba2724. (10.1126/sciadv.aba2724) PubMed DOI PMC

Vicente-Serrano SM, Begueria S.. 2020. SPEI Global drought monitor. See https://spei.csic.es/map/maps.html.

Stoy PC, et al. 2013. A data-driven analysis of energy balance closure across FLUXNET research sites: the role of landscape scale heterogeneity. Agric. For. Meteorol . 171–172, 137–152. (10.1016/j.agrformet.2012.11.004). DOI

Wilson K, et al. 2002. Energy balance closure at FLUXNET sites. Agric. For. Meteorol. 113, 223–243. (10.1016/s0168-1923(02)00109-0) DOI

Foken T, Aubinet M, Finnigan JJ, Leclerc MY, Mauder M, Paw UKT. 2011. Results of a panel discussion about the energy balance closure correction for trace gases. Bull. Am. Meteorol. Soc. 92, ES13–ES18. (10.1175/2011BAMS3130.1) DOI

Budyko MI. 1974. Climate and life. New York, NY: Academic Press.

Williams CA, et al. 2012. Climate and vegetation controls on the surface water balance: synthesis of evapotranspiration measured across a global network of flux towers. Water Resour. Res. 48, W06523. (10.1029/2011wr011586) DOI

Nijp JJ, Metselaar K, Limpens J, Bartholomeus HM, Nilsson MB, Berendse F, van der Zee S. 2019. High-resolution peat volume change in a northern peatland: spatial variability, main drivers, and impact on ecohydrology. Ecohydrology 12, 17 (10.1002/eco.2114) DOI

Wolf S, et al. 2013. Contrasting response of grassland versus forest carbon and water fluxes to spring drought in Switzerland. Environ. Res. Lett. 8, 12 (10.1088/1748-9326/8/3/035007) DOI

Teuling AJ, et al. 2013. Evapotranspiration amplifies European summer drought. Geophys. Res. Lett. 40, 2071–2075. (10.1002/grl.50495) DOI

Kabat P, et al. 2004. Vegetation, water, humans and the climate: a new perspective on an Interactive system. Dordrecht, The Netherlands: Springer.

Betts RA. 2000. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408, 187–190. (10.1038/35041545) PubMed DOI

Rotenberg E, Yakir D. 2010. Contribution of semi-arid forests to the climate system. Science 327, 451–454. (10.1126/science.1179998) PubMed DOI

Ramonet M, et al. 2020. The fingerprint of the summer 2018 drought in Europe on ground-based atmospheric CO2 measurements. Phil. Trans. R. Soc. B 375, 20190513 (10.1098/rstb.2019.0513) PubMed DOI PMC

Thompson RL, et al. 2020. Changes in net ecosystem exchange over Europe during the 2018 drought based on atmospheric observations. Phil. Trans. R. Soc. B 375, 20190512 (10.1098/rstb.2019.0512) PubMed DOI PMC

Wohlfahrt G, et al. 2018. Sun-induced fluorescence and gross primary productivity during a heat wave. Sci. Rep. 8, 9 (10.1038/s41598-018-32602-z) PubMed DOI PMC

Stoy PC, et al. 2019. Reviews and syntheses: turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities. Biogeosciences 16, 3747–3775. (10.5194/bg-16-3747-2019) DOI

Beer C, et al. 2009. Temporal and among-site variability of inherent water use efficiency at the ecosystem level. Global Biogeochem. Cycles 23, 13 (10.1029/2008gb003233) DOI

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.c.5105937

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace