Joint optimization of land carbon uptake and albedo can help achieve moderate instantaneous and long-term cooling effects

. 2023 ; 4 (1) : 298. [epub] 20230825

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38665193

Grantová podpora
I 3859 Austrian Science Fund FWF - Austria
P 27176 Austrian Science Fund FWF - Austria
P 35737 Austrian Science Fund FWF - Austria

Both carbon dioxide uptake and albedo of the land surface affect global climate. However, climate change mitigation by increasing carbon uptake can cause a warming trade-off by decreasing albedo, with most research focusing on afforestation and its interaction with snow. Here, we present carbon uptake and albedo observations from 176 globally distributed flux stations. We demonstrate a gradual decline in maximum achievable annual albedo as carbon uptake increases, even within subgroups of non-forest and snow-free ecosystems. Based on a paired-site permutation approach, we quantify the likely impact of land use on carbon uptake and albedo. Shifting to the maximum attainable carbon uptake at each site would likely cause moderate net global warming for the first approximately 20 years, followed by a strong cooling effect. A balanced policy co-optimizing carbon uptake and albedo is possible that avoids warming on any timescale, but results in a weaker long-term cooling effect.

A N Severtsov Institute of Ecology and Evolution Russian Academy of Sciences 119071 Leninsky pr 33 Moscow Russia

Andalusian Institute for Earth System Research 18071 Granada Spain

Bioclimatology University of Göttingen Göttingen Germany

CESBIO Université de Toulouse CNES CNRS INRA IRD UPS Toulouse France

Departament of Ecology University of Granada 18071 Granada Spain

Department Computational Hydrosystems Helmholtz Centre for Environmental Research Permoserstr 15 04318 Leipzig Germany

Department of Atmospheric and Oceanic Sciences University of Wisconsin Madison Madison WI USA

Department of Chemical Engineering University of Liège Liège Belgium

Department of Environmental Systems Science ETH Zürich Universitätstrasse 2 Zürich 8092 Switzerland

Department of Geography University of Tartu Tartu Estonia

Department of Natural Sciences Macquarie University North Ryde NSW 2109 Australia

Department of Physical Geography and Ecosystem Science Lund University Lund Sweden

Division of Energy Environment and Society University of Dundee Dundee UK

Earth and Atmospheric Sciences Department Centre for Earth Observation Sciences Edmonton AB Canada

European Commission Joint Research Centre Ispra Italy

Faculty of Agricultural Environmental and Food Sciences Free University of Bolzano Piazza Università 5 39100 Bolzano Italy

Global Change Research Institute CAS Bělidla 986 4a CZ 60300 Brno Czech Republic

Institute of Bio and Geosciences Agrosphere Research Centre Jülich Jülich Germany

Institute of Bio and Geosciences Plant Sciences Research Centre Jülich Jülich Germany

Institute of Landscape Ecology University of Münster Münster Germany

Laboratoire des Sciences du Climat et de l'Environnement LSCE IPSL CEA CNRS UVSQ Université Paris Saclay Gif sur Yvette 91191 France

Physical Geography and Climatology Institute of Geography RWTH Aachen University Aachen Germany

Research Institute on Terrestrial Ecosystems National Research Council Sesto Fiorentino Italy

Technische Universität Dresden Institute of Hydrology and Meteorology Dresden Germany

Thünen Institute of Climate Smart Agriculture Braunschweig Germany

Universität Innsbruck Institut für Ökologie Innsbruck Austria

Zobrazit více v PubMed

Luyssaert S, et al. Trade-offs in using European forests to meet climate objectives. Nature. 2018;562:259–262. PubMed PMC

Marland G, et al. The climatic impacts of land surface change and carbon management, and the implications for climate-change mitigation policy. Clim. Polic. 2003;3:149–157.

Bright RM, Lund MT. CO2-equivalence metrics for surface albedo change based on the radiative forcing concept: a critical review. Atmos. Chem. Phys. 2021;21:9887–9907.

Jones AD, Collins WD, Torn MS. On the additivity of radiative forcing between land use change and greenhouse gases. Geophys. Res. Lett. 2013;40:4036–4041.

Kirschbaum MUF, et al. Implications of albedo changes following afforestation on the benefits of forests as carbon sinks. Biogeosciences. 2011;8:3687–3696.

Betts RA. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature. 2000;408:187–190. PubMed

Ney P, et al. CO2 fluxes before and after partial deforestation of a Central European spruce forest. Agric. For. Meteorol. 2019;274:61–74.

Rotenberg E, Yakir D. Contribution of semi-arid forests to the climate system. Science. 2010;327:451–454. PubMed

Rohatyn S, Yakir D, Rotenberg E, Carmel Y. Limited climate change mitigation potential through forestation of the vast dryland regions. Science. 2022;377:1436–1439. PubMed

Mykleby PM, Snyder PK, Twine TE. Quantifying the trade-off between carbon sequestration and albedo in midlatitude and high-latitude North American forests. Geophys. Res. Lett. 2017;44:2493–2501.

Rautiainen A, Lintunen J, Uusivuori J. Market-Level Implications of Regulating Forest Carbon Storage and Albedo for Climate Change Mitigation. Agric. Resour. Econ. Rev. 2018;47:239–271.

Thompson M, Adams D, Johnson KN. The Albedo Effect and Forest Carbon Offset Design. J. For. 2009;107:425–431.

IPCC. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 10.1017/9781009157926 (Cambridge University Press, 2022).

Lenton TM, Vaughan NE. The radiative forcing potential of different climate geoengineering options. Atmos. Chem. Phys. 2009;9:5539–5561.

IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2021).

Pongratz, J., Reick, C. H., Raddatz, T., Caldeira, K. & Claussen, M. Past land use decisions have increased mitigation potential of reforestation. Geophys. Res. Lett. 3810.1029/2011gl047848 (2011).

Pongratz J, et al. Land Use Effects on Climate: Current State, Recent Progress, and Emerging Topics. Curr. Clim. Chang. Rep. 2021;7:99–120.

Jackson, R. B. et al. Protecting climate with forests. Environ. Res. Lett. 310.1088/1748-9326/3/4/044006 (2008).

Bonan GB. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science. 2008;320:1444–1449. PubMed

Smith P, et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Chang. 2016;6:42–50.

Genesio, L. et al. Surface albedo following biochar application in durum wheat. Environ. Res. Lett. 710.1088/1748-9326/7/1/014025 (2012).

Genesio L, Bassi R, Miglietta F. Plants with less chlorophyll: A global change perspective. Glob. Chang. Biol. 2021;27:959–967. PubMed PMC

Ollinger SV, et al. Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: Functional relations and potential climate feedbacks. Proc. Natl. Acad. Sci. USA. 2008;105:19336–19341. PubMed PMC

Eichelmann E, Wagner-Riddle C, Warland J, Deen B, Voroney P. Comparison of carbon budget, evapotranspiration, and albedo effect between the biofuel crops switchgrass and corn. Agric. Ecosyst. Environ. 2016;231:271–282.

Carrer, D., Pique, G., Ferlicoq, M., Ceamanos, X. & Ceschia, E. What is the potential of cropland albedo management in the fight against global warming? A case study based on the use of cover crops. Environ. Res. Lett. 1310.1088/1748-9326/aab650 (2018).

Lugato, E., Cescatti, A., Jones, A., Ceccherini, G. & Duveiller, G. Maximising climate mitigation potential by carbon and radiative agricultural land management with cover crops. Environ. Res. Lett. 1510.1088/1748-9326/aba137 (2020).

Ceschia E, et al. Potentiel d’attenuation des changements climatiques par les couverts intermediaires. Innov. Agron. 2017;62:43–58.

Guardia, G. et al. Effective climate change mitigation through cover cropping and integrated fertilization: A global warming potential assessment from a 10-year field experiment. J. Clean. Prod.24110.1016/j.jclepro.2019.118307 (2019).

Kaye, J. P. & Quemada, M. Using cover crops to mitigate and adapt to climate change. A review. Agron. Sustain. Dev.3710.1007/s13593-016-0410-x (2017).

Sieber P, Ericsson N, Hansson PA. Climate impact of surface albedo change in Life Cycle Assessment: Implications of site and time dependence. Environ. Impact Assess. Rev. 2019;77:191–200.

Smith CJ, et al. Effective radiative forcing and adjustments in CMIP6 models. Atmos. Chem. Phys. 2020;20:9591–9618.

Xu, R. et al. Contrasting impacts of forests on cloud cover based on satellite observations. Nat. Commun.1310.1038/s41467-022-28161-7 (2022). PubMed PMC

L’Ecuyer TS, Hang Y, Matus AV, Wang ZE. Reassessing the Effect of Cloud Type on Earth’s Energy Balance in the Age of Active Spaceborne Observations. Part I: Top of Atmosphere and Surface. J. Clim. 2019;32:6197–6217.

Teuling, A. J. et al. Observational evidence for cloud cover enhancement over western European forests. Nat. Commun.810.1038/ncomms14065 (2017). PubMed PMC

Britton CM, Dodd JD. Relationships of photosynthetically active radiation and shortwave irradiance. Agric. Meteorol. 1976;17:1–7.

Hovi A, Lukes P, Rautiainen M. Seasonality of albedo and FAPAR in a boreal forest. Agric. For. Meteorol. 2017;247:331–342.

Lukes P, Stenberg P, Mottus M, Manninen T, Rautiainen M. Multidecadal analysis of forest growth and albedo in boreal Finland. Int. J. Appl. Earth Obs. Geoinform. 2016;52:296–305.

Blanken PD, et al. Energy balance and canopy conductance of a boreal aspen forest: Partitioning overstory and understory components. J. Geophys. Res.-Atmos. 1997;102:28915–28927.

Black TA, et al. Annual cycles of water vapour and carbon dioxide fluxes in and above a boreal aspen forest. Glob. Chang. Biol. 1996;2:219–229.

Chen WJ, et al. Effects of climatic variability on the annual carbon sequestration by a boreal aspen forest. Glob. Chang. Biol. 1999;5:41–53.

Tucker CJ, Sellers PJ. Satellite Remote-Sensing of Primary Production. Int. J. Remote Sens. 1986;7:1395–1416.

Migliavacca M, et al. The three major axes of terrestrial ecosystem function. Nature. 2021;598:468. PubMed PMC

Luyssaert S, et al. Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat. Clim. Chang. 2014;4:389–393.

Genesio L, Vaccari FP, Miglietta F. Black carbon aerosol from biochar threats its negative emission potential. Glob. Chang. Biol. 2016;22:2313–2314. PubMed

Post DF, et al. Predicting soil albedo from soil color and spectral reflectance data. Soil Sci. Soc. Am. J. 2000;64:1027–1034.

Proulx, R. On the general relationship between plant height and aboveground biomass of vegetation stands in contrasted ecosystems. PLoS One1610.1371/journal.pone.0252080 (2021). PubMed PMC

Krstic, D. et al. The Effect of Cover Crops on Soil Water Balance in Rain-Fed Conditions. Atmosphere910.3390/atmos9120492 (2018).

Meyer, N., Bergez, J. E., Constantin, J. & Justes, E. Cover crops reduce water drainage in temperate climates: A meta-analysis. Agrono. Sustain. Dev.3910.1007/s13593-018-0546-y (2019).

Constantin J, Le Bas C, Justes E. Large-scale assessment of optimal emergence and destruction dates for cover crops to reduce nitrate leaching in temperate conditions using the STICS soil-crop model. Eur. J. Agron. 2015;69:75–87.

Tribouillois H, Constantin J, Justes E. Cover crops mitigate direct greenhouse gases balance but reduce drainage under climate change scenarios in temperate climate with dry summers. Glob. Chang. Biol. 2018;24:2513–2529. PubMed

Sakowska K, et al. Leaf and canopy photosynthesis of a chlorophyll deficient soybean mutant. Plant Cell Environ. 2018;41:1427–1437. PubMed

Bartlett MK, Ollinger SV, Hollinger DY, Wicklein HF, Richardson AD. Canopy-scale relationships between foliar nitrogen and albedo are not observed in leaf reflectance and transmittance within temperate deciduous tree species. Botany. 2011;89:491–497.

Knyazikhin Y, et al. Hyperspectral remote sensing of foliar nitrogen content. Proc. Natl Acad. Sci. USA. 2013;110:E185–E192. PubMed PMC

Hollinger DY, et al. Albedo estimates for land surface models and support for a new paradigm based on foliage nitrogen concentration. Glob. Chang. Biol. 2010;16:696–710.

Doughty CE, et al. Tropical forest leaves may darken in response to climate change. Nat. Ecol. Evol. 2018;2:1918–1924. PubMed

Jin X, Wan L, Su Z. Research on evaporation of Taiyuan basin area by using remote sensing. Hydrol. Earth Syst. Sci. Discuss. 2005;2005:209–227.

Schwaab, J. et al. Increasing the broad-leaved tree fraction in European forests mitigates hot temperature extremes. Sci. Rep.1010.1038/s41598-020-71055-1 (2020). PubMed PMC

Felton A, et al. Replacing monocultures with mixed-species stands: Ecosystem service implications of two production forest alternatives in Sweden. Ambio. 2016;45:S124–S139. PubMed PMC

Gamfeldt, L. et al. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun.410.1038/ncomms2328 (2013). PubMed PMC

Jonsson M, Bengtsson J, Gamfeldt L, Moen J, Snall T. Levels of forest ecosystem services depend on specific mixtures of commercial tree species. Nat. Plants. 2019;5:141. PubMed

Farley KA, Jobbagy EG, Jackson RB. Effects of afforestation on water yield: a global synthesis with implications for policy. Glob. Chang. Biol. 2005;11:1565–1576.

Filoso, S., Bezerra, M. O., Weiss, K. C. B. & Palmer, M. A. Impacts of forest restoration on water yield: A systematic review. PLoS One1210.1371/journal.pone.0183210 (2017). PubMed PMC

Hoek van Dijke AJ, et al. Shifts in regional water availability due to global tree restoration. Nat. Geosci. 2022;15:363–368.

Aragao, L. et al. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun.910.1038/s41467-017-02771-y (2018). PubMed PMC

Bale JS, et al. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Chang. Biol. 2002;8:1–16.

Kovenock M, Swann ALS. Leaf Trait Acclimation Amplifies Simulated Climate Warming in Response to Elevated Carbon Dioxide. Glob. Biogeochem. Cycles. 2018;32:1437–1448.

Monson, R. & Baldocchi, D. Terrestrial Biosphere-Atmosphere Fluxes. (Cambridge University Press, 2014).

Graf A, et al. Altered energy partitioning across terrestrial ecosystems in the European drought year 2018. Philos. Transac. R. Soc. B. 2020;375:20190524. PubMed PMC

Sherwood SC, et al. Adjustments in the forcing-feedback framework for understanding climate change. Bull. Am. Meteorol. Soc. 2015;96:217–228.

Andrews T, Betts RA, Booth BBB, Jones CD, Jones GS. Effective radiative forcing from historical land use change. Clim. Dyn. 2017;48:3489–3505.

Forster PM, et al. Recommendations for diagnosing effective radiative forcing from climate models for CMIP6. J. Geophys. Res.-Atmos. 2016;121:12460–12475.

Baldocchi D, et al. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 2001;82:2415–2434.

Pastorello G, et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data. 2020;7:225. PubMed PMC

Warm Winter 2020 Team & ICOS Ecosystem Thematic Centre. Warm Winter 2020 ecosystem eddy covariance flux product for 73 stations in FLUXNET-Archive format—release 2022-1 (Version 1.0), <10.18160/2G60-ZHAK> (2022).

AmeriFlux. AmeriFlux FLUXNET (CC-BY-4.0) product, <https://ameriflux.lbl.gov/introducing-the-ameriflux-fluxnet-data-product/> (2022).

Graf A, et al. Spatiotemporal relations between water budget components and soil water content in a forested tributary catchment. Water Resour. Res. 2014;50:4837–4857.

NASA. Earthdata MODIS fAPAR/LAI (MCD15A3H v6.1) product, <https://appeears.earthdatacloud.nasa.gov> (2022).

Myhre G, Highwood EJ, Shine KP, Stordal F. New estimates of radiative forcing due to well mixed greenhouse gases. Geophys. Res. Lett. 1998;25:2715–2718.

Besnard, S. et al. Quantifying the effect of forest age in annual net forest carbon balance. Environ. Res. Lett. 1310.1088/1748-9326/aaeaeb (2018).

FAO & ITPS. Global Soil Organic Carbon Map V1.5: Technical report., (Rome, FAO & ITPS, 2020).

Santoro M, et al. The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations. Earth System Sci. Data. 2021;13:3927–3950.

Friedlingstein P, et al. Global Carbon Budget 2021. Earth Syst. Sci. Data. 2022;14:1917–2005.

Kutsch WL, et al. The net biome production of full crop rotations in Europe. Agric. Ecosyst. Environ. 2010;139:336–345.

Ciais P, et al. The European carbon balance. Part 2: croplands. Glob. Chang. Biol. 2010;16:1409–1428.

Chang JF, et al. The greenhouse gas balance of European grasslands. Glob. Chang. Biol. 2015;21:3748–3761. PubMed

Luyssaert S, et al. The European carbon balance. Part 3: forests. Glob. Chang. Biol. 2010;16:1429–1450.

Bright RM, O’Halloran TL. Developing a monthly radiative kernel for surface albedo change from satellite climatologies of Earth’s shortwave radiation budget: CACK v1.0. Geosci. Model Dev. 2019;12:3975–3990.

Smith CJ, et al. Understanding Rapid Adjustments to Diverse Forcing Agents. Geophys. Res. Lett. 2018;45:12023–12031. PubMed PMC

Pendergrass AG, Conley A, Vitt FM. Surface and top-of-atmosphere radiative feedback kernels for CESM-CAM5. Earth Syst. Sci. Data. 2018;10:317–324.

Flechard CR, et al. Carbon-nitrogen interactions in European forests and semi-natural vegetation - Part 1: Fluxes and budgets of carbon, nitrogen and greenhouse gases from ecosystem monitoring and modelling. Biogeosciences. 2020;17:1583–1620.

Musavi, T. et al. Stand age and species richness dampen interannual variation of ecosystem-level photosynthetic capacity. Nat. Ecol. Evol.110.1038/s41559-016-0048 (2017). PubMed

Pendergrass, A. G. CAM5 Radiative Kernels, <https://zenodo.org/record/997902> (2017).

Smith, C. J. HadGEM2 radiative kernels, <10.5518/406> (2018).

Bright, R. M. & O’Halloran, T. L. A monthly shortwave radiative forcing kernel for surface albedo change using CERES satellite data, <10.6073/pasta/d77b84b11be99ed4d5376d77fe0043d8> (2019).

Smith, C. J. HadGEM3-GA7.1 radiative kernels, <10.5281/zenodo.3594673> (2019).

Graf, A. et al. Dataset for “Joint optimization of land carbon uptake and albedo can help achieve moderate instantaneous and long-term cooling effects”, <10.5281/zenodo.8172207> (2023). PubMed PMC

Beringer J, et al. Bridge to the future: Important lessons from 20 years of ecosystem observations made by the OzFlux network. Glob. Chang. Biol. 2022;28:3489–3514. PubMed PMC

Crameri, F., Shephard, G. E. & Heron, P. J. The misuse of colour in science communication. Nat. Commun.1110.1038/s41467-020-19160-7 (2020). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...