Long-term daily hydrometeorological drought indices, soil moisture, and evapotranspiration for ICOS sites
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu dataset, časopisecké články
Grantová podpora
RA 3235/1-1
Deutsche Forschungsgemeinschaft (German Research Foundation)
PubMed
37179354
PubMed Central
PMC10183025
DOI
10.1038/s41597-023-02192-1
PII: 10.1038/s41597-023-02192-1
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- dataset MeSH
Eddy covariance sites are ideally suited for the study of extreme events on ecosystems as they allow the exchange of trace gases and energy fluxes between ecosystems and the lower atmosphere to be directly measured on a continuous basis. However, standardized definitions of hydroclimatic extremes are needed to render studies of extreme events comparable across sites. This requires longer datasets than are available from on-site measurements in order to capture the full range of climatic variability. We present a dataset of drought indices based on precipitation (Standardized Precipitation Index, SPI), atmospheric water balance (Standardized Precipitation Evapotranspiration Index, SPEI), and soil moisture (Standardized Soil Moisture Index, SSMI) for 101 ecosystem sites from the Integrated Carbon Observation System (ICOS) with daily temporal resolution from 1950 to 2021. Additionally, we provide simulated soil moisture and evapotranspiration for each site from the Mesoscale Hydrological Model (mHM). These could be utilised for gap-filling or long-term research, among other applications. We validate our data set with measurements from ICOS and discuss potential research avenues.
Friedrich Schiller University Jena Institute of Geoscience Burgweg 11 07749 Jena Germany
Helmholtz Centre for Environmental Research Permoserstraße 15 04318 Leipzig Germany
Zobrazit více v PubMed
Boergens E, Güntner A, Dobslaw H, Dahle C. Quantifying the Central European Droughts in 2018 and 2019 With GRACE Follow-On. Geophysical Research Letters. 2020;47:e2020GL087285. doi: 10.1029/2020GL087285. DOI
Rakovec O, et al. The 2018– 2020 Multi-Year Drought Sets a New Benchmark in Europe. Earth’s Future. 2022;10:e2021EF002394. doi: 10.1029/2021EF002394. DOI
Sippel S, et al. Drought, Heat, and the Carbon Cycle: A Review. Current Climate Change Reports. 2018;4:266–286. doi: 10.1007/s40641-018-0103-4. DOI
Humphrey V, et al. Soil moisture– atmosphere feedback dominates land carbon uptake variability. Nature. 2021;592:65–69. doi: 10.1038/s41586-021-03325-5. PubMed DOI PMC
Foken, T., Aubinet, M. & Leuning, R. The Eddy Covariance Method. In Aubinet, M., Vesala, T. & Papale, D. (eds.) Eddy Covariance, 1–19 (Springer Netherlands, Dordrecht, 2012).
Franz D, et al. Towards long-term standardised carbon and greenhouse gas observations for monitoring Europe’s terrestrial ecosystems: A review. International Agrophysics. 2018;32:439–455. doi: 10.1515/intag-2017-0039. DOI
Heiskanen J, et al. The Integrated Carbon Observation System in Europe. Bulletin of the American Meteorological Society. 2022;103:E855–E872. doi: 10.1175/BAMS-D-19-0364.1. DOI
Drought 2018 Team and ICOS Ecosystem Thematic Centre Drought-2018 ecosystem eddy covariance flux product for 52 stations in FLUXNET-Archive format. ICOS Carbon Portal. 2020 doi: 10.18160/YVR0-4898. DOI
Bastos A, et al. Impacts of extreme summers on European ecosystems: A comparative analysis of 2003, 2010 and 2018. Philosophical Transactions of the Royal Society B: Biological Sciences. 2020;375:20190507. doi: 10.1098/rstb.2019.0507. PubMed DOI PMC
Beillouin D, Schauberger B, Bastos A, Ciais P, Makowski D. Impact of extreme weather conditions on European crop production in 2018. Philosophical Transactions of the Royal Society B: Biological Sciences. 2020;375:20190510. doi: 10.1098/rstb.2019.0510. PubMed DOI PMC
El-Madany TS, et al. Drought and heatwave impacts on semi-arid ecosystems’ carbon fluxes along a precipitation gradient. Philosophical Transactions of the Royal Society B: Biological Sciences. 2020;375:20190519. doi: 10.1098/rstb.2019.0519. PubMed DOI PMC
Fu Z, et al. Sensitivity of gross primary productivity to climatic drivers during the summer drought of 2018 in Europe. Philosophical Transactions of the Royal Society B: Biological Sciences. 2020;375:20190747. doi: 10.1098/rstb.2019.0747. PubMed DOI PMC
Gharun M, et al. Physiological response of Swiss ecosystems to 2018 drought across plant types and elevation. Philosophical Transactions of the Royal Society B: Biological Sciences. 2020;375:20190521. doi: 10.1098/rstb.2019.0521. PubMed DOI PMC
Gourlez de la Motte L, et al. Non-stomatal processes reduce gross primary productivity in temperate forest ecosystems during severe edaphic drought. Philosophical Transactions of the Royal Society B: Biological Sciences. 2020;375:20190527. doi: 10.1098/rstb.2019.0527. PubMed DOI PMC
Graf A, et al. Altered energy partitioning across terrestrial ecosystems in the European drought year 2018. Philosophical Transactions of the Royal Society B: Biological Sciences. 2020;375:20190524. doi: 10.1098/rstb.2019.0524. PubMed DOI PMC
Koebsch F, et al. The impact of occasional drought periods on vegetation spread and greenhouse gas exchange in rewetted fens. Philosophical Transactions of the Royal Society B: Biological Sciences. 2020;375:20190685. doi: 10.1098/rstb.2019.0685. PubMed DOI PMC
Kowalska N, et al. Analysis of floodplain forest sensitivity to drought. Philosophical Transactions of the Royal Society B: Biological Sciences. 2020;375:20190518. doi: 10.1098/rstb.2019.0518. PubMed DOI PMC
Peters W, Bastos A, Ciais P, Vermeulen A. A historical, geographical and ecological perspective on the 2018 European summer drought. Philosophical Transactions of the Royal Society B: Biological Sciences. 2020;375:20190505. doi: 10.1098/rstb.2019.0505. PubMed DOI PMC
Ramonet M, et al. The fingerprint of the summer 2018 drought in Europe on ground-based atmospheric CO2 measurements. Philosophical Transactions of the Royal Society B: Biological Sciences. 2020;375:20190513. doi: 10.1098/rstb.2019.0513. PubMed DOI PMC
Rinne J, et al. Effect of the 2018 European drought on methane and carbon dioxide exchange of northern mire ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences. 2020;375:20190517. doi: 10.1098/rstb.2019.0517. PubMed DOI PMC
Rödenbeck C, Zaehle S, Keeling R, Heimann M. The European carbon cycle response to heat and drought as seen from atmospheric CO2 data for 1999– 2018. Philosophical Transactions of the Royal Society B: Biological Sciences. 2020;375:20190506. doi: 10.1098/rstb.2019.0506. PubMed DOI PMC
Smith NE, et al. Spring enhancement and summer reduction in carbon uptake during the 2018 drought in northwestern Europe. Philosophical Transactions of the Royal Society B: Biological Sciences. 2020;375:20190509. doi: 10.1098/rstb.2019.0509. PubMed DOI PMC
Thompson RL, et al. Changes in net ecosystem exchange over Europe during the 2018 drought based on atmospheric observations. Philosophical Transactions of the Royal Society B: Biological Sciences. 2020;375:20190512. doi: 10.1098/rstb.2019.0512. PubMed DOI PMC
Keyantash J, Dracup JA. The Quantification of Drought: An Evaluation of Drought Indices. Bulletin of the American Meteorological Society. 2002;83:1167–1180. doi: 10.1175/1520-0477-83.8.1167. DOI
Stahl, K. et al. The challenges of hydrological drought definition, quantification and communication: An interdisciplinary perspective. In Proceedings of IAHS, vol. 383, 291–295 (Copernicus GmbH, 2020).
McPhillips LE, et al. Defining Extreme Events: A Cross-Disciplinary Review. Earth’s Future. 2018;6:441–455. doi: 10.1002/2017EF000686. DOI
Slette, I. J. et al. How ecologists define drought, and why we should do better. Global Change Biology gcb.14747 (2019). PubMed
McKee TB, Doesken NJ, Kleist J. The relationship of drought frequency and duration to time scales. Proceedings of the 8th Conference on Applied Climatology. 1993;17:179–183.
Guttman NB. Accepting the Standardized Precipitation Index: A calculation algorithm. JAWRA Journal of the American Water Resources Association. 1999;35:311–322. doi: 10.1111/j.1752-1688.1999.tb03592.x. DOI
Vicente-Serrano SM, Beguería S, López-Moreno JI. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. Journal of Climate. 2010;23:1696–1718. doi: 10.1175/2009JCLI2909.1. DOI
Samaniego L, Kumar R, Zink M. Implications of Parameter Uncertainty on Soil Moisture Drought Analysis in Germany. Journal of Hydrometeorology. 2013;14:47–68. doi: 10.1175/JHM-D-12-075.1. DOI
Heim RR. A Review of Twentieth-Century Drought Indices Used in the United States. Bulletin of the American Meteorological Society. 2002;83:1149–1166. doi: 10.1175/1520-0477-83.8.1149. DOI
Zargar A, Sadiq R, Naser B, Khan FI. A review of drought indices. Environmental Reviews. 2011;19:333–349. doi: 10.1139/a11-013. DOI
Mukherjee S, Mishra A, Trenberth KE. Climate Change and Drought: A Perspective on Drought Indices. Current Climate Change Reports. 2018;4:145–163. doi: 10.1007/s40641-018-0098-x. DOI
Mishra AK, Singh VP. A review of drought concepts. Journal of Hydrology. 2010;391:202–216. doi: 10.1016/j.jhydrol.2010.07.012. DOI
Guttman NB. On the Sensitivity of Sample L Moments to Sample Size. Journal of Climate. 1994;7:1026–1029. doi: 10.1175/1520-0442(1994)007<1026:OTSOSL>2.0.CO;2. DOI
Kumar R, Samaniego L, Attinger S. Implications of distributed hydrologic model parameterization on water fluxes at multiple scales and locations. Water Resources Research. 2013;49:360–379. doi: 10.1029/2012WR012195. DOI
Samaniego, L., Kumar, R. & Attinger, S. Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resources Research46 (2010).
Cornes RC, van der Schrier G, van den Besselaar EJM, Jones PD. An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets. Journal of Geophysical Research: Atmospheres. 2018;123:9391–9409. doi: 10.1029/2017JD028200. DOI
Danielson, J. J. & Gesch, D. B. Global multi-resolution terrain elevation data 2010 (GMTED2010). USGS Numbered Series 2011-1073, U.S. Geological Survey (2011).
Hengl T, et al. SoilGrids250m: Global gridded soil information based on machine learning. PLOS ONE. 2017;12:e0169748. doi: 10.1371/journal.pone.0169748. PubMed DOI PMC
Arino O, 2012. Global land cover map for 2009 (GlobCover 2009) PANGAEA. DOI
Tucker CJ, et al. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. International Journal of Remote Sensing. 2005;26:4485–4498. doi: 10.1080/01431160500168686. DOI
Hanel M, et al. Revisiting the recent European droughts from a long-term perspective. Scientific Reports. 2018;8:9499. doi: 10.1038/s41598-018-27464-4. PubMed DOI PMC
Samaniego L, et al. Hydrological forecasts and projections for improved decision-making in the water sector in Europe. Bulletin of the American Meteorological Society. 2019;100:2451–2471. doi: 10.1175/BAMS-D-17-0274.1. DOI
Warm Winter 2020 Team and ICOS Ecosystem Thematic Centre Warm winter 2020 ecosystem eddy covariance flux product for 73 stations in FLUXNET-Archive format— release 2022-1. ICOS Carbon Portal. 2022 doi: 10.18160/2G60-ZHAK. DOI
Wu H, Svoboda MD, Hayes MJ, Wilhite DA, Wen F. Appropriate application of the standardized precipitation index in arid locations and dry seasons. International Journal of Climatology. 2007;27:65–79. doi: 10.1002/joc.1371. DOI
Cancelliere A, Mauro GD, Bonaccorso B, Rossi G. Drought forecasting using the Standardized Precipitation Index. Water Resources Management. 2007;21:801–819. doi: 10.1007/s11269-006-9062-y. DOI
Seiler RA, Hayes M, Bressan L. Using the standardized precipitation index for flood risk monitoring. International Journal of Climatology. 2002;22:1365–1376. doi: 10.1002/joc.799. DOI
Vicente-Serrano SM, López-Moreno JI. Hydrological response to different time scales of climatological drought: An evaluation of the Standardized Precipitation Index in a mountainous Mediterranean basin. Hydrology and Earth System Sciences. 2005;9:523–533. doi: 10.5194/hess-9-523-2005. DOI
WMO. Standardized Precipitation Index User Guide. No. 1090 in WMO-No. (World Meteorological Organization, Geneva, Switzerland, 2012).
Asadi Zarch MA, Sivakumar B, Sharma A. Droughts in a warming climate: A global assessment of Standardized precipitation index (SPI) and Reconnaissance drought index (RDI) Journal of Hydrology. 2015;526:183–195. doi: 10.1016/j.jhydrol.2014.09.071. DOI
Ault TR. On the essentials of drought in a changing climate. Science. 2020;368:256–260. doi: 10.1126/science.aaz5492. PubMed DOI
AghaKouchak A. A baseline probabilistic drought forecasting framework using standardized soil moisture index: Application to the 2012 United States drought. Hydrology and Earth System Sciences. 2014;18:2485–2492. doi: 10.5194/hess-18-2485-2014. DOI
Hao Z, AghaKouchak A, Nakhjiri N, Farahmand A. Global integrated drought monitoring and prediction system. Scientific Data. 2014;1:140001. doi: 10.1038/sdata.2014.1. PubMed DOI PMC
Xu Y, Wang L, Ross KW, Liu C, Berry K. Standardized Soil Moisture Index for Drought Monitoring Based on Soil Moisture Active Passive Observations and 36 Years of North American Land Data Assimilation System Data: A Case Study in the Southeast United States. Remote Sensing. 2018;10:301. doi: 10.3390/rs10020301. PubMed DOI PMC
Zeri M, et al. Importance of including soil moisture in drought monitoring over the Brazilian semiarid region: An evaluation using the JULES model, in situ observations, and remote sensing. Climate Resilience and Sustainability. 2022;1:e7. doi: 10.1002/cli2.7. DOI
Zink M, et al. The German drought monitor. Environmental Research Letters. 2016;11:074002. doi: 10.1088/1748-9326/11/7/074002. DOI
Saha TR, Shrestha PK, Rakovec O, Thober S, Samaniego L. A drought monitoring tool for South Asia. Environmental Research Letters. 2021;16:054014. doi: 10.1088/1748-9326/abf525. DOI
Samaniego L, et al. Anthropogenic warming exacerbates European soil moisture droughts. Nature Climate Change. 2018;8:421–426. doi: 10.1038/s41558-018-0138-5. DOI
Boeing F, et al. High-resolution drought simulations and comparison to soil moisture observations in Germany. Hydrology and Earth System Sciences. 2022;26:5137–5161. doi: 10.5194/hess-26-5137-2022. DOI
Stagge JH, Tallaksen LM, Gudmundsson L, Van Loon AF, Stahl K. Candidate Distributions for Climatological Drought Indices (SPI and SPEI) International Journal of Climatology. 2015;35:4027–4040. doi: 10.1002/joc.4267. DOI
Vicente-Serrano SM, Beguería S. Comment on ‘Candidate distributions for climatological drought indices (SPI and SPEI)’ by James H. Stagge et al. International Journal of Climatology. 2016;36:2120–2131. doi: 10.1002/joc.4474. DOI
Stagge JH, Tallaksen LM, Gudmundsson L, Van Loon AF, Stahl K. Response to comment on ‘Candidate Distributions for Climatological Drought Indices (SPI and SPEI)’. International Journal of Climatology. 2016;36:2132–2138. doi: 10.1002/joc.4564. DOI
Sol’áková T, De Michele C, Vezzoli R. Comparison between Parametric and Nonparametric Approaches for the Calculation of Two Drought Indices: SPI and SSI. Journal of Hydrologic Engineering. 2014;19:04014010. doi: 10.1061/(ASCE)HE.1943-5584.0000942. DOI
Farahmand A, AghaKouchak A. A generalized framework for deriving nonparametric standardized drought indicators. Advances in Water Resources. 2015;76:140–145. doi: 10.1016/j.advwatres.2014.11.012. DOI
Kumar R, et al. Multiscale evaluation of the Standardized Precipitation Index as a groundwater drought indicator. Hydrology and Earth System Sciences. 2016;20:1117–1131. doi: 10.5194/hess-20-1117-2016. DOI
Vergni L, Todisco F, Mannocchi F. Evaluating the uncertainty and reliability of standardized indices. Hydrology Research. 2016;48:701–713. doi: 10.2166/nh.2016.076. DOI
Heidenreich N-B, Schindler A, Sperlich S. Bandwidth selection for kernel density estimation: A review of fully automatic selectors. AStA Advances in Statistical Analysis. 2013;97:403–433. doi: 10.1007/s10182-013-0216-y. DOI
Scott, D. W. & Sain, S. R. Multidimensional Density Estimation. In Handbook of Statistics, vol. 24, 229–261 (Elsevier, 2005).
Abramowitz, M. & Stegun, I. A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, ninth dover printing, tenth gpo printing edn (Dover, New York, 1964).
Rajagopalan B, Lall U, Tarboton DG. Evaluation of kernel density estimation methods for daily precipitation resampling. Stochastic Hydrology and Hydraulics. 1997;11:523–547. doi: 10.1007/BF02428432. DOI
Hargreaves GH, Zohrab A. Samani. Reference Crop Evapotranspiration from Temperature. Applied Engineering in Agriculture. 1985;1:96–99. doi: 10.13031/2013.26773. DOI
Thornthwaite CW. An Approach toward a Rational Classification of Climate. Geographical Review. 1948;38:55–94. doi: 10.2307/210739. DOI
Allen RG, Pereira L, Raes D, Smith M. Crop evapotranspiration — guidelines for computing crop water requirements. FAO Irrigation and drainage. 1998;56:327.
Stagge, J. H., et al. (eds.) Hydrology in a Changing World, IAHS-AISH Proceedings and Reports, 367–373 (Copernicus GmbH, 2014).
Makkink GF. Testing the Penman formula by means of lysimeters. Journal of the Institution of Water Engineerrs. 1957;11:277–288.
Pohl F, 2022. Long-term daily hydrometeorological drought indices, soil moisture, and evapotranspiration for ICOS ecosystem sites. Zenodo. PubMed DOI PMC
Hofstra, N., Haylock, M., New, M. & Jones, P. D. Testing E-OBS European high-resolution gridded data set of daily precipitation and surface temperature. Journal of Geophysical Research: Atmospheres114 (2009).
Bandhauer M, et al. Evaluation of daily precipitation analyses in E-OBS (v19.0e) and ERA5 by comparison to regional high-resolution datasets in European regions. International Journal of Climatology. 2022;42:727–747. doi: 10.1002/joc.7269. DOI
Mavromatis T. Drought index evaluation for assessing future wheat production in Greece. International Journal of Climatology. 2007;27:911–924. doi: 10.1002/joc.1444. DOI
Harrell, F. E. Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis. Springer Series in Statistics (Springer International Publishing, Cham, 2015).
Agnew, C. T. Using the SPI to Identify Drought. Drought Network News (1994–2001) (2000).
Svoboda, M. et al. The Drought Monitor. Drought Mitigation Center Faculty Publications (2002).
Pohl F. Long-term daily hydrometeorological drought indices, soil moisture, and evapotranspiration for ICOS ecosystem sites: software code. 2023 doi: 10.5281/zenodo.7473637. PubMed DOI PMC