Long-term daily hydrometeorological drought indices, soil moisture, and evapotranspiration for ICOS sites

. 2023 May 13 ; 10 (1) : 281. [epub] 20230513

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu dataset, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37179354

Grantová podpora
RA 3235/1-1 Deutsche Forschungsgemeinschaft (German Research Foundation)

Odkazy

PubMed 37179354
PubMed Central PMC10183025
DOI 10.1038/s41597-023-02192-1
PII: 10.1038/s41597-023-02192-1
Knihovny.cz E-zdroje

Eddy covariance sites are ideally suited for the study of extreme events on ecosystems as they allow the exchange of trace gases and energy fluxes between ecosystems and the lower atmosphere to be directly measured on a continuous basis. However, standardized definitions of hydroclimatic extremes are needed to render studies of extreme events comparable across sites. This requires longer datasets than are available from on-site measurements in order to capture the full range of climatic variability. We present a dataset of drought indices based on precipitation (Standardized Precipitation Index, SPI), atmospheric water balance (Standardized Precipitation Evapotranspiration Index, SPEI), and soil moisture (Standardized Soil Moisture Index, SSMI) for 101 ecosystem sites from the Integrated Carbon Observation System (ICOS) with daily temporal resolution from 1950 to 2021. Additionally, we provide simulated soil moisture and evapotranspiration for each site from the Mesoscale Hydrological Model (mHM). These could be utilised for gap-filling or long-term research, among other applications. We validate our data set with measurements from ICOS and discuss potential research avenues.

Zobrazit více v PubMed

Boergens E, Güntner A, Dobslaw H, Dahle C. Quantifying the Central European Droughts in 2018 and 2019 With GRACE Follow-On. Geophysical Research Letters. 2020;47:e2020GL087285. doi: 10.1029/2020GL087285. DOI

Rakovec O, et al. The 2018– 2020 Multi-Year Drought Sets a New Benchmark in Europe. Earth’s Future. 2022;10:e2021EF002394. doi: 10.1029/2021EF002394. DOI

Sippel S, et al. Drought, Heat, and the Carbon Cycle: A Review. Current Climate Change Reports. 2018;4:266–286. doi: 10.1007/s40641-018-0103-4. DOI

Humphrey V, et al. Soil moisture– atmosphere feedback dominates land carbon uptake variability. Nature. 2021;592:65–69. doi: 10.1038/s41586-021-03325-5. PubMed DOI PMC

Foken, T., Aubinet, M. & Leuning, R. The Eddy Covariance Method. In Aubinet, M., Vesala, T. & Papale, D. (eds.) Eddy Covariance, 1–19 (Springer Netherlands, Dordrecht, 2012).

Franz D, et al. Towards long-term standardised carbon and greenhouse gas observations for monitoring Europe’s terrestrial ecosystems: A review. International Agrophysics. 2018;32:439–455. doi: 10.1515/intag-2017-0039. DOI

Heiskanen J, et al. The Integrated Carbon Observation System in Europe. Bulletin of the American Meteorological Society. 2022;103:E855–E872. doi: 10.1175/BAMS-D-19-0364.1. DOI

Drought 2018 Team and ICOS Ecosystem Thematic Centre Drought-2018 ecosystem eddy covariance flux product for 52 stations in FLUXNET-Archive format. ICOS Carbon Portal. 2020 doi: 10.18160/YVR0-4898. DOI

Bastos A, et al. Impacts of extreme summers on European ecosystems: A comparative analysis of 2003, 2010 and 2018. Philosophical Transactions of the Royal Society B: Biological Sciences. 2020;375:20190507. doi: 10.1098/rstb.2019.0507. PubMed DOI PMC

Beillouin D, Schauberger B, Bastos A, Ciais P, Makowski D. Impact of extreme weather conditions on European crop production in 2018. Philosophical Transactions of the Royal Society B: Biological Sciences. 2020;375:20190510. doi: 10.1098/rstb.2019.0510. PubMed DOI PMC

El-Madany TS, et al. Drought and heatwave impacts on semi-arid ecosystems’ carbon fluxes along a precipitation gradient. Philosophical Transactions of the Royal Society B: Biological Sciences. 2020;375:20190519. doi: 10.1098/rstb.2019.0519. PubMed DOI PMC

Fu Z, et al. Sensitivity of gross primary productivity to climatic drivers during the summer drought of 2018 in Europe. Philosophical Transactions of the Royal Society B: Biological Sciences. 2020;375:20190747. doi: 10.1098/rstb.2019.0747. PubMed DOI PMC

Gharun M, et al. Physiological response of Swiss ecosystems to 2018 drought across plant types and elevation. Philosophical Transactions of the Royal Society B: Biological Sciences. 2020;375:20190521. doi: 10.1098/rstb.2019.0521. PubMed DOI PMC

Gourlez de la Motte L, et al. Non-stomatal processes reduce gross primary productivity in temperate forest ecosystems during severe edaphic drought. Philosophical Transactions of the Royal Society B: Biological Sciences. 2020;375:20190527. doi: 10.1098/rstb.2019.0527. PubMed DOI PMC

Graf A, et al. Altered energy partitioning across terrestrial ecosystems in the European drought year 2018. Philosophical Transactions of the Royal Society B: Biological Sciences. 2020;375:20190524. doi: 10.1098/rstb.2019.0524. PubMed DOI PMC

Koebsch F, et al. The impact of occasional drought periods on vegetation spread and greenhouse gas exchange in rewetted fens. Philosophical Transactions of the Royal Society B: Biological Sciences. 2020;375:20190685. doi: 10.1098/rstb.2019.0685. PubMed DOI PMC

Kowalska N, et al. Analysis of floodplain forest sensitivity to drought. Philosophical Transactions of the Royal Society B: Biological Sciences. 2020;375:20190518. doi: 10.1098/rstb.2019.0518. PubMed DOI PMC

Peters W, Bastos A, Ciais P, Vermeulen A. A historical, geographical and ecological perspective on the 2018 European summer drought. Philosophical Transactions of the Royal Society B: Biological Sciences. 2020;375:20190505. doi: 10.1098/rstb.2019.0505. PubMed DOI PMC

Ramonet M, et al. The fingerprint of the summer 2018 drought in Europe on ground-based atmospheric CO2 measurements. Philosophical Transactions of the Royal Society B: Biological Sciences. 2020;375:20190513. doi: 10.1098/rstb.2019.0513. PubMed DOI PMC

Rinne J, et al. Effect of the 2018 European drought on methane and carbon dioxide exchange of northern mire ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences. 2020;375:20190517. doi: 10.1098/rstb.2019.0517. PubMed DOI PMC

Rödenbeck C, Zaehle S, Keeling R, Heimann M. The European carbon cycle response to heat and drought as seen from atmospheric CO2 data for 1999– 2018. Philosophical Transactions of the Royal Society B: Biological Sciences. 2020;375:20190506. doi: 10.1098/rstb.2019.0506. PubMed DOI PMC

Smith NE, et al. Spring enhancement and summer reduction in carbon uptake during the 2018 drought in northwestern Europe. Philosophical Transactions of the Royal Society B: Biological Sciences. 2020;375:20190509. doi: 10.1098/rstb.2019.0509. PubMed DOI PMC

Thompson RL, et al. Changes in net ecosystem exchange over Europe during the 2018 drought based on atmospheric observations. Philosophical Transactions of the Royal Society B: Biological Sciences. 2020;375:20190512. doi: 10.1098/rstb.2019.0512. PubMed DOI PMC

Keyantash J, Dracup JA. The Quantification of Drought: An Evaluation of Drought Indices. Bulletin of the American Meteorological Society. 2002;83:1167–1180. doi: 10.1175/1520-0477-83.8.1167. DOI

Stahl, K. et al. The challenges of hydrological drought definition, quantification and communication: An interdisciplinary perspective. In Proceedings of IAHS, vol. 383, 291–295 (Copernicus GmbH, 2020).

McPhillips LE, et al. Defining Extreme Events: A Cross-Disciplinary Review. Earth’s Future. 2018;6:441–455. doi: 10.1002/2017EF000686. DOI

Slette, I. J. et al. How ecologists define drought, and why we should do better. Global Change Biology gcb.14747 (2019). PubMed

McKee TB, Doesken NJ, Kleist J. The relationship of drought frequency and duration to time scales. Proceedings of the 8th Conference on Applied Climatology. 1993;17:179–183.

Guttman NB. Accepting the Standardized Precipitation Index: A calculation algorithm. JAWRA Journal of the American Water Resources Association. 1999;35:311–322. doi: 10.1111/j.1752-1688.1999.tb03592.x. DOI

Vicente-Serrano SM, Beguería S, López-Moreno JI. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. Journal of Climate. 2010;23:1696–1718. doi: 10.1175/2009JCLI2909.1. DOI

Samaniego L, Kumar R, Zink M. Implications of Parameter Uncertainty on Soil Moisture Drought Analysis in Germany. Journal of Hydrometeorology. 2013;14:47–68. doi: 10.1175/JHM-D-12-075.1. DOI

Heim RR. A Review of Twentieth-Century Drought Indices Used in the United States. Bulletin of the American Meteorological Society. 2002;83:1149–1166. doi: 10.1175/1520-0477-83.8.1149. DOI

Zargar A, Sadiq R, Naser B, Khan FI. A review of drought indices. Environmental Reviews. 2011;19:333–349. doi: 10.1139/a11-013. DOI

Mukherjee S, Mishra A, Trenberth KE. Climate Change and Drought: A Perspective on Drought Indices. Current Climate Change Reports. 2018;4:145–163. doi: 10.1007/s40641-018-0098-x. DOI

Mishra AK, Singh VP. A review of drought concepts. Journal of Hydrology. 2010;391:202–216. doi: 10.1016/j.jhydrol.2010.07.012. DOI

Guttman NB. On the Sensitivity of Sample L Moments to Sample Size. Journal of Climate. 1994;7:1026–1029. doi: 10.1175/1520-0442(1994)007<1026:OTSOSL>2.0.CO;2. DOI

Kumar R, Samaniego L, Attinger S. Implications of distributed hydrologic model parameterization on water fluxes at multiple scales and locations. Water Resources Research. 2013;49:360–379. doi: 10.1029/2012WR012195. DOI

Samaniego, L., Kumar, R. & Attinger, S. Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resources Research46 (2010).

Cornes RC, van der Schrier G, van den Besselaar EJM, Jones PD. An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets. Journal of Geophysical Research: Atmospheres. 2018;123:9391–9409. doi: 10.1029/2017JD028200. DOI

Danielson, J. J. & Gesch, D. B. Global multi-resolution terrain elevation data 2010 (GMTED2010). USGS Numbered Series 2011-1073, U.S. Geological Survey (2011).

Hengl T, et al. SoilGrids250m: Global gridded soil information based on machine learning. PLOS ONE. 2017;12:e0169748. doi: 10.1371/journal.pone.0169748. PubMed DOI PMC

Arino O, 2012. Global land cover map for 2009 (GlobCover 2009) PANGAEA. DOI

Tucker CJ, et al. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. International Journal of Remote Sensing. 2005;26:4485–4498. doi: 10.1080/01431160500168686. DOI

Hanel M, et al. Revisiting the recent European droughts from a long-term perspective. Scientific Reports. 2018;8:9499. doi: 10.1038/s41598-018-27464-4. PubMed DOI PMC

Samaniego L, et al. Hydrological forecasts and projections for improved decision-making in the water sector in Europe. Bulletin of the American Meteorological Society. 2019;100:2451–2471. doi: 10.1175/BAMS-D-17-0274.1. DOI

Warm Winter 2020 Team and ICOS Ecosystem Thematic Centre Warm winter 2020 ecosystem eddy covariance flux product for 73 stations in FLUXNET-Archive format— release 2022-1. ICOS Carbon Portal. 2022 doi: 10.18160/2G60-ZHAK. DOI

Wu H, Svoboda MD, Hayes MJ, Wilhite DA, Wen F. Appropriate application of the standardized precipitation index in arid locations and dry seasons. International Journal of Climatology. 2007;27:65–79. doi: 10.1002/joc.1371. DOI

Cancelliere A, Mauro GD, Bonaccorso B, Rossi G. Drought forecasting using the Standardized Precipitation Index. Water Resources Management. 2007;21:801–819. doi: 10.1007/s11269-006-9062-y. DOI

Seiler RA, Hayes M, Bressan L. Using the standardized precipitation index for flood risk monitoring. International Journal of Climatology. 2002;22:1365–1376. doi: 10.1002/joc.799. DOI

Vicente-Serrano SM, López-Moreno JI. Hydrological response to different time scales of climatological drought: An evaluation of the Standardized Precipitation Index in a mountainous Mediterranean basin. Hydrology and Earth System Sciences. 2005;9:523–533. doi: 10.5194/hess-9-523-2005. DOI

WMO. Standardized Precipitation Index User Guide. No. 1090 in WMO-No. (World Meteorological Organization, Geneva, Switzerland, 2012).

Asadi Zarch MA, Sivakumar B, Sharma A. Droughts in a warming climate: A global assessment of Standardized precipitation index (SPI) and Reconnaissance drought index (RDI) Journal of Hydrology. 2015;526:183–195. doi: 10.1016/j.jhydrol.2014.09.071. DOI

Ault TR. On the essentials of drought in a changing climate. Science. 2020;368:256–260. doi: 10.1126/science.aaz5492. PubMed DOI

AghaKouchak A. A baseline probabilistic drought forecasting framework using standardized soil moisture index: Application to the 2012 United States drought. Hydrology and Earth System Sciences. 2014;18:2485–2492. doi: 10.5194/hess-18-2485-2014. DOI

Hao Z, AghaKouchak A, Nakhjiri N, Farahmand A. Global integrated drought monitoring and prediction system. Scientific Data. 2014;1:140001. doi: 10.1038/sdata.2014.1. PubMed DOI PMC

Xu Y, Wang L, Ross KW, Liu C, Berry K. Standardized Soil Moisture Index for Drought Monitoring Based on Soil Moisture Active Passive Observations and 36 Years of North American Land Data Assimilation System Data: A Case Study in the Southeast United States. Remote Sensing. 2018;10:301. doi: 10.3390/rs10020301. PubMed DOI PMC

Zeri M, et al. Importance of including soil moisture in drought monitoring over the Brazilian semiarid region: An evaluation using the JULES model, in situ observations, and remote sensing. Climate Resilience and Sustainability. 2022;1:e7. doi: 10.1002/cli2.7. DOI

Zink M, et al. The German drought monitor. Environmental Research Letters. 2016;11:074002. doi: 10.1088/1748-9326/11/7/074002. DOI

Saha TR, Shrestha PK, Rakovec O, Thober S, Samaniego L. A drought monitoring tool for South Asia. Environmental Research Letters. 2021;16:054014. doi: 10.1088/1748-9326/abf525. DOI

Samaniego L, et al. Anthropogenic warming exacerbates European soil moisture droughts. Nature Climate Change. 2018;8:421–426. doi: 10.1038/s41558-018-0138-5. DOI

Boeing F, et al. High-resolution drought simulations and comparison to soil moisture observations in Germany. Hydrology and Earth System Sciences. 2022;26:5137–5161. doi: 10.5194/hess-26-5137-2022. DOI

Stagge JH, Tallaksen LM, Gudmundsson L, Van Loon AF, Stahl K. Candidate Distributions for Climatological Drought Indices (SPI and SPEI) International Journal of Climatology. 2015;35:4027–4040. doi: 10.1002/joc.4267. DOI

Vicente-Serrano SM, Beguería S. Comment on ‘Candidate distributions for climatological drought indices (SPI and SPEI)’ by James H. Stagge et al. International Journal of Climatology. 2016;36:2120–2131. doi: 10.1002/joc.4474. DOI

Stagge JH, Tallaksen LM, Gudmundsson L, Van Loon AF, Stahl K. Response to comment on ‘Candidate Distributions for Climatological Drought Indices (SPI and SPEI)’. International Journal of Climatology. 2016;36:2132–2138. doi: 10.1002/joc.4564. DOI

Sol’áková T, De Michele C, Vezzoli R. Comparison between Parametric and Nonparametric Approaches for the Calculation of Two Drought Indices: SPI and SSI. Journal of Hydrologic Engineering. 2014;19:04014010. doi: 10.1061/(ASCE)HE.1943-5584.0000942. DOI

Farahmand A, AghaKouchak A. A generalized framework for deriving nonparametric standardized drought indicators. Advances in Water Resources. 2015;76:140–145. doi: 10.1016/j.advwatres.2014.11.012. DOI

Kumar R, et al. Multiscale evaluation of the Standardized Precipitation Index as a groundwater drought indicator. Hydrology and Earth System Sciences. 2016;20:1117–1131. doi: 10.5194/hess-20-1117-2016. DOI

Vergni L, Todisco F, Mannocchi F. Evaluating the uncertainty and reliability of standardized indices. Hydrology Research. 2016;48:701–713. doi: 10.2166/nh.2016.076. DOI

Heidenreich N-B, Schindler A, Sperlich S. Bandwidth selection for kernel density estimation: A review of fully automatic selectors. AStA Advances in Statistical Analysis. 2013;97:403–433. doi: 10.1007/s10182-013-0216-y. DOI

Scott, D. W. & Sain, S. R. Multidimensional Density Estimation. In Handbook of Statistics, vol. 24, 229–261 (Elsevier, 2005).

Abramowitz, M. & Stegun, I. A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, ninth dover printing, tenth gpo printing edn (Dover, New York, 1964).

Rajagopalan B, Lall U, Tarboton DG. Evaluation of kernel density estimation methods for daily precipitation resampling. Stochastic Hydrology and Hydraulics. 1997;11:523–547. doi: 10.1007/BF02428432. DOI

Hargreaves GH, Zohrab A. Samani. Reference Crop Evapotranspiration from Temperature. Applied Engineering in Agriculture. 1985;1:96–99. doi: 10.13031/2013.26773. DOI

Thornthwaite CW. An Approach toward a Rational Classification of Climate. Geographical Review. 1948;38:55–94. doi: 10.2307/210739. DOI

Allen RG, Pereira L, Raes D, Smith M. Crop evapotranspiration — guidelines for computing crop water requirements. FAO Irrigation and drainage. 1998;56:327.

Stagge, J. H., et al. (eds.) Hydrology in a Changing World, IAHS-AISH Proceedings and Reports, 367–373 (Copernicus GmbH, 2014).

Makkink GF. Testing the Penman formula by means of lysimeters. Journal of the Institution of Water Engineerrs. 1957;11:277–288.

Pohl F, 2022. Long-term daily hydrometeorological drought indices, soil moisture, and evapotranspiration for ICOS ecosystem sites. Zenodo. PubMed DOI PMC

Hofstra, N., Haylock, M., New, M. & Jones, P. D. Testing E-OBS European high-resolution gridded data set of daily precipitation and surface temperature. Journal of Geophysical Research: Atmospheres114 (2009).

Bandhauer M, et al. Evaluation of daily precipitation analyses in E-OBS (v19.0e) and ERA5 by comparison to regional high-resolution datasets in European regions. International Journal of Climatology. 2022;42:727–747. doi: 10.1002/joc.7269. DOI

Mavromatis T. Drought index evaluation for assessing future wheat production in Greece. International Journal of Climatology. 2007;27:911–924. doi: 10.1002/joc.1444. DOI

Harrell, F. E. Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis. Springer Series in Statistics (Springer International Publishing, Cham, 2015).

Agnew, C. T. Using the SPI to Identify Drought. Drought Network News (1994–2001) (2000).

Svoboda, M. et al. The Drought Monitor. Drought Mitigation Center Faculty Publications (2002).

Pohl F. Long-term daily hydrometeorological drought indices, soil moisture, and evapotranspiration for ICOS ecosystem sites: software code. 2023 doi: 10.5281/zenodo.7473637. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace