Sensitivity of gross primary productivity to climatic drivers during the summer drought of 2018 in Europe
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
32892724
PubMed Central
PMC7485099
DOI
10.1098/rstb.2019.0747
Knihovny.cz E-zdroje
- Klíčová slova
- Europe, drought, eddy covariance, gross primary productivity, sensitivity, soil moisture,
- MeSH
- atmosféra analýza MeSH
- fyziologie rostlin * MeSH
- klimatické změny * MeSH
- lesy * MeSH
- období sucha * MeSH
- pastviny * MeSH
- roční období MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geografické názvy
- Evropa MeSH
In summer 2018, Europe experienced a record drought, but it remains unknown how the drought affected ecosystem carbon dynamics. Using observations from 34 eddy covariance sites in different biomes across Europe, we studied the sensitivity of gross primary productivity (GPP) to environmental drivers during the summer drought of 2018 versus the reference summer of 2016. We found a greater drought-induced decline of summer GPP in grasslands (-38%) than in forests (-10%), which coincided with reduced evapotranspiration and soil water content (SWC). As compared to the 'normal year' of 2016, GPP in different ecosystems exhibited more negative sensitivity to summer air temperature (Ta) but stronger positive sensitivity to SWC during summer drought in 2018, that is, a stronger reduction of GPP with soil moisture deficit. We found larger negative effects of Ta and vapour pressure deficit (VPD) but a lower positive effect of photosynthetic photon flux density on GPP in 2018 compared to 2016, which contributed to reduced summer GPP in 2018. Our results demonstrate that high temperature-induced increases in VPD and decreases in SWC aggravated drought impacts on GPP. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.
AgroParisTech Université de Lorraine INRAE UMR Silva 54000 Nancy France
Bioclimatology University of Goettingen Büsgenweg 2 37077 Göttingen Germany
CNR ISAFOM via Patacca 85 80040 Ercolano Italy
CSIRO Oceans and Atmosphere Aspendale 3195 Australia
DAFNAE University of Padova Viale dell'Università 16 35020 Legnaro Italy
Department of Biological Systems Engineering University of Wisconsin Madison WI USA
Department of Environmental Systems Science ETH Zurich Universitaetstrasse 2 8092 Zurich Switzerland
Department of Geography Ludwig Maximilians University Luisenstrasse 37 80333 Munich Germany
Department of Land Resources and Environmental Sciences Montana State University Bozeman MT USA
Environmental Protection Agency of Aosta Valley Italy
European Commission Joint Research Centre Via E Fermi 2479 21027 Ispra Italy
Gembloux Agro Bio Tech Terra Teaching and Research Center University of Liege Gembloux Belgium
National Research Council Institute for Bioeconomy Rome Italy
Plants and Ecosystems University of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
Thünen Institut für Agrarklimaschutz Bundesallee 68 38116 Braunschweig Germany
Universität Rostock Landschaftsökologie und Standortkunde 18059 Rostock Germany
Zobrazit více v PubMed
Buras A, Rammig A, Zang CS. 2019. Quantifying impacts of the drought 2018 on European ecosystems in comparison to 2003. arXiv 1906.08605 (10.5194/bg-2019-286-supplement) DOI
Sousa PM, Barriopedro D, Ramos AM, García-Herrera R, Espírito-Santo F, Trigo RM. 2019. Saharan air intrusions as a relevant mechanism for Iberian heatwaves: the record breaking events of August 2018 and June 2019. Weather Clim. Extremes 26, 100224 (10.1016/j.wace.2019.100224) DOI
Van der Schrier G, Briffa K, Jones P, Osborn T.. 2006. Summer moisture variability across Europe. J. Clim. 19, 2818–2834. (10.1175/JCLI3734.1) DOI
Seneviratne SI, Lüthi D, Litschi M, Schär C. 2006. Land–atmosphere coupling and climate change in Europe. Nature 443, 205 (10.1038/nature05095) PubMed DOI
Zscheischler J, Reichstein M, Harmeling S, Rammig A, Tomelleri E, Mahecha MD. 2014. Extreme events in gross primary production: a characterization across continents. Biogeosciences 11, 2909–2924. (10.5194/bg-11-2909-2014) DOI
Humphrey V, Zscheischler J, Ciais P, Gudmundsson L, Sitch S, Seneviratne SI. 2018. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631. (10.1038/s41586-018-0424-4). PubMed DOI
Reichstein M, et al. 2013. Climate extremes and the carbon cycle. Nature 500, 287–295. (10.1038/nature12350) PubMed DOI
Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ. 2010. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161. (10.1016/j.earscirev.2010.02.004) DOI
Bonan GB. 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449. (10.1126/science.1155121) PubMed DOI
von Buttlar J, et al. 2018. Impacts of droughts and extreme temperature events on gross primary production and ecosystem respiration: a systematic assessment across ecosystems and climate zones. Biogeosciences 15, 1293–1318. (10.5194/bg-15-1293-2018). DOI
Konings A, Williams A, Gentine P. 2017. Sensitivity of grassland productivity to aridity controlled by stomatal and xylem regulation. Nat. Geosci. 10, 284 (10.1038/ngeo2903) DOI
Novick KA, et al. 2016. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6, 1023 (10.1038/nclimate3114) DOI
Goodrich J, Campbell D, Clearwater M, Rutledge S, Schipper L. 2015. High vapor pressure deficit constrains GPP and the light response of NEE at a Southern Hemisphere bog. Agric. For. Meteorol. 203, 54–63. (10.1016/j.agrformet.2015.01.001) DOI
Luo Y. 2007. Terrestrial carbon-cycle feedback to climate warming. Annu. Rev. Ecol. Evol. Syst. 38, 683–712. (10.1146/annurev.ecolsys.38.091206.095808) DOI
Jung M, et al. 2010. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951 (10.1038/nature09396) PubMed DOI
Gentine P, Green JK, Guérin M, Humphrey V, Seneviratne SI, Zhang Y, Zhou S. 2019. Coupling between the terrestrial carbon and water cycles—a review. Environ. Res. Lett. 14, 083003 (10.1088/1748-9326/ab22d6) DOI
Baldocchi DD. 2020. How eddy covariance flux measurements have contributed to our understanding of Global Change Biology. Glob. Change Biol. 26, 242–260. (10.1111/gcb.14807) PubMed DOI
Mahecha MD, et al. 2017. Detecting impacts of extreme events with ecological in situ monitoring networks. Biogeosciences 14, 4255–4277. (10.5194/bg-14-4255-2017) DOI
Drought 2018 Team and ICOS Ecosystem Thematic Centre. 2019. Drought-2018 ecosystem eddy covariance flux product in FLUXNET-archive format - release 2019–1. ICOS Carbon Portal; (10.18160/PZDK-EF78) DOI
Sabbatini S, et al. 2018. Eddy covariance raw data processing for CO2 and energy fluxes calculation at ICOS ecosystem stations. Int. Agrophys. 32, 495–515. (10.1515/intag-2017-0043) DOI
Lasslop G, Reichstein M, Papale D, Richardson AD, Arneth A, Barr A, Stoy P, Wohlfahrt G. 2010. Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Glob. Change Biol. 16, 187–208. (10.1111/j.1365-2486.2009.02041.x) DOI
Reichstein M, et al. 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob. Change Biol. 11, 1424–1439. (10.1111/j.1365-2486.2005.001002.x) DOI
Ionita M, Tallaksen L, Kingston D, Stagge J, Laaha G, Van Lanen H, Scholz P, Chelcea S, Haslinger K.. 2017. The European 2015 drought from a climatological perspective. Hydrol. Earth Syst. Sci. 21, 1397–1419. (10.5194/hess-21-1397-2017) DOI
Laaha G, et al. 2017. The European 2015 drought from a hydrological perspective Hydrol. Earth Syst. Sci. 21, 3001–3024. (10.5194/hess-21-3001-2017) DOI
Rita A, et al. 2020. The impact of drought spells on forests depends on site conditions: the case of 2017 summer heat wave in southern Europe. Glob. Change Biol. 26, 851–863. (10.1111/gcb.14825) PubMed DOI
Albergel C, et al. 2008. From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model simulations. Hydrol. Earth Syst. Sci. 12, 1323–1337. (10.5194/hess-12-1323-2008) DOI
Schroeder MA, Lander J, Levine-Silverman S. 1990. Diagnosing and dealing with multicollinearity. West. J. Nurs. Res. 12, 175–187. (10.1177/019394599001200204) PubMed DOI
Monteith J. 1981. Evaporation and surface temperature. Q. J. R. Meteorol. Soc. 107, 1–27. (10.1002/qj.49710745102) DOI
Pennypacker S, Baldocchi D. 2016. Seeing the fields and forests: application of surface-layer theory and flux-tower data to calculating vegetation canopy height. Boundary Layer Meteorol. 158, 165–182. (10.1007/s10546-015-0090-0) DOI
Li CC. 1975. Path analysis—a primer. Pacific Grove, CA: Boxwood Press.
Rosseel Y. 2012. Lavaan: an R package for structural equation modeling and more. Version 0.5–12 (BETA). J. Stat. Softw. 48, 1–36. (10.18637/jss.v048.i02) DOI
Liu Y, He N, Zhu J, Xu L, Yu G, Niu S, Sun X, Wen X. 2017. Regional variation in the temperature sensitivity of soil organic matter decomposition in China's forests and grasslands. Glob. Change Biol. 23, 3393–3402. (10.1111/gcb.13613) PubMed DOI
Thomas CK, Law BE, Irvine J, Martin JG, Pettijohn JC, Davis KJ. 2009. Seasonal hydrology explains interannual and seasonal variation in carbon and water exchange in a semiarid mature ponderosa pine forest in central Oregon. J. Geophys. Res. 114, G04006 (10.1029/2009JG001010) DOI
Blackman CJ, Brodribb TJ, Jordan GJ. 2009. Leaf hydraulics and drought stress: response, recovery and survivorship in four woody temperate plant species. Plant Cell Environ. 32, 1584–1595. (10.1111/j.1365-3040.2009.02023.x) PubMed DOI
Brodribb TJ, Powers J, Cochard H, Choat B. 2020. Hanging by a thread? Forests and drought. Science 368, 261–266. (10.1126/science.aat7631) PubMed DOI
Borken W, Savage K, Davidson EA, Trumbore SE. 2006. Effects of experimental drought on soil respiration and radiocarbon efflux from a temperate forest soil. Glob. Change Biol. 12, 177–193. (10.1111/j.1365-2486.2005.001058.x) DOI
Burton AJ, Pregitzer KS, Zogg GP, Zak DR. 1998. Drought reduces root respiration in sugar maple forests. Ecol. Appl. 8, 771–778. (10.1890/1051-0761(1998)008[0771:DRRRIS]2.0.CO;2) DOI
Jassal RS, Black TA, Novak MD, Gaumont-Guay D, Nesic Z. 2008. Effect of soil water stress on soil respiration and its temperature sensitivity in an 18-year-old temperate Douglas-fir stand. Glob. Change Biol. 14, 1305–1318. (10.1111/j.1365-2486.2008.01573.x) DOI
Wen X-F, Yu G-R, Sun X-M, Li Q-K, Liu Y-F, Zhang L-M, Ren C-Y, Fu Y-L, Li Z-Q. 2006. Soil moisture effect on the temperature dependence of ecosystem respiration in a subtropical Pinus plantation of southeastern China. Agric. For. Meteorol. 137, 166–175. (10.1016/j.agrformet.2006.02.005) DOI
Koven CD, Hugelius G, Lawrence DM, Wieder WR. 2017. Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nat. Clim. Change 7, 817 (10.1038/nclimate3421) DOI
Sierra CA, Trumbore SE, Davidson EA, Vicca S, Janssens I. 2015. Sensitivity of decomposition rates of soil organic matter with respect to simultaneous changes in temperature and moisture. J. Adv. Model. Earth Syst. 7, 335–356. (10.1002/2014MS000358) DOI
Teuling AJ, et al. 2010. Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci. 3, 722 (10.1038/ngeo950) DOI
Konings AG, Gentine P. 2017. Global variations in ecosystem-scale isohydricity. Glob. Change Biol. 23, 891–905. (10.1111/gcb.13389) PubMed DOI
Martínez-Vilalta J, Garcia-Forner N. 2017. Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept. Plant Cell Environ. 40, 962–976. (10.1111/pce.12846) PubMed DOI
Sippel S, Reichstein M, Ma X, Mahecha MD, Lange H, Flach M, Frank D. 2018. Drought, heat, and the carbon cycle: a review. Curr. Clim. Change Rep. 4, 266–286. (10.1007/s40641-018-0103-4) DOI
Jentsch A, et al. 2011. Climate extremes initiate ecosystem-regulating functions while maintaining productivity. J. Ecol. 99, 689–702. (10.1111/j.1365-2745.2011.01817.x) DOI
Lu M, Zhou X, Yang Q, Li H, Luo Y, Fang C, Chen J, Yang X, Li B. 2013. Responses of ecosystem carbon cycle to experimental warming: a meta-analysis. Ecology 94, 726–738. (10.1890/12-0279.1) PubMed DOI
June T, Evans JR, Farquhar GD. 2004. A simple new equation for the reversible temperature dependence of photosynthetic electron transport: a study on soybean leaf. Funct. Plant Biol. 31, 275–283. (10.1071/FP03250) PubMed DOI
Von Caemmerer S. 2000. Biochemical models of leaf photosynthesis. Techniques in Plant Science, no. 2. Collingwood, Australia: CSIRO Publishing.
Wu J, et al. 2017. Partitioning controls on Amazon forest photosynthesis between environmental and biotic factors at hourly to interannual timescales. Glob. Change Biol. 23, 1240–1257. (10.1111/gcb.13509) PubMed DOI
Quan Q, Tian D, Luo Y, Zhang F, Crowther TW, Zhu K, Chen HY, Zhou Q, Niu S. 2019. Water scaling of ecosystem carbon cycle feedback to climate warming. Sci. Adv. 5, eaav1131 (10.1126/sciadv.aav1131) PubMed DOI PMC
Poulter B, et al. 2014. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600 (10.1038/nature13376) PubMed DOI
Tang G, Arnone J III, Verburg P, Jasoni R, Sun L. 2015. Trends and climatic sensitivities of vegetation phenology in semiarid and arid ecosystems in the US Great Basin during 1982–2011. Biogeosciences 12, 6985–6997. (10.5194/bg-12-6985-2015) DOI
Chapin FS III, Matson PA, Vitousek P. 2011. Principles of terrestrial ecosystem ecology. Berlin, Germany: Springer Science & Business Media.
Lobell DB, Roberts MJ, Schlenker W, Braun N, Little BB, Rejesus RM, Hammer GL. 2014. Greater sensitivity to drought accompanies maize yield increase in the US Midwest. Science 344, 516–519. (10.1126/science.1251423) PubMed DOI
Zhang Y, Xiao X, Zhou S, Ciais P, McCarthy H, Luo Y. 2016. Canopy and physiological controls of GPP during drought and heat wave. Geophys. Res. Lett. 43, 3325–3333. (10.1002/2016gl068501) DOI
Richardson AD, Hollinger DY, Aber JD, Ollinger SV, Braswell BH. 2007. Environmental variation is directly responsible for short- but not long-term variation in forest-atmosphere carbon exchange. Glob. Change Biol. 13, 788–803. (10.1111/j.1365-2486.2007.01330.x) DOI
figshare
10.6084/m9.figshare.c.5077595