Kinetics and Mechanism of the Hydrolysis and Rearrangement Processes within the Assembly-Disassembly-Organization-Reassembly Synthesis of Zeolites
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30786710
PubMed Central
PMC6515985
DOI
10.1021/jacs.9b00643
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The hydrolysis (disassembly, D) and rearrangement (organization, O) steps of the assembly-disassembly-organization-reassembly (ADOR) process for the synthesis of zeolites have been studied. Germanium-rich UTL was subjected to hydrolysis conditions in water to understand the effects of temperature (100, 92, 85, 81, 77, and 70 °C). Samples were taken periodically over an 8-37 h period, and each sample was analyzed by powder X-ray diffraction. The results show that the hydrolysis step is solely dependent on the presence of liquid water, whereas the rearrangement is dependent on the temperature of the system. The kinetics have been investigated using the Avrami-Erofeev model. With increasing temperature, an increase in the rate of reaction for the rearrangement step was observed, and the Arrhenius equation was used to ascertain an apparent activation energy for the rearrangement from the kinetic product of the disassembly (IPC-1P) to the thermodynamic product of the rearrangement (IPC-2P). From this information, a mechanism for this transformation can be postulated.
Zobrazit více v PubMed
Eliášová P.; Opanasenko M. V.; Wheatley P. S.; Shamzhy M. V.; Mazur M.; Nachtigall P.; Roth W. J.; Morris R. E.; Čejka J. The ADOR Mechanism for the Synthesis of New Zeolites. Chem. Soc. Rev. 2015, 44 (20), 7177–7206. 10.1039/C5CS00045A. PubMed DOI
Mazur M.; Wheatley P. S.; Navarro M.; Roth W. J.; Položij M.; Mayoral A.; Eliášová P.; Nachtigall P.; Čejka J.; Morris R. E. Synthesis of “unfeasible” Zeolites. Nat. Chem. 2016, 8 (1), 58–62. 10.1038/nchem.2374. PubMed DOI
Opanasenko M. V.; Roth W. J.; Čejka J. Two-Dimensional Zeolites in Catalysis: Current Status and Perspectives. Catal. Sci. Technol. 2016, 6 (8), 2467–2484. 10.1039/C5CY02079D. DOI
Shamzhy M.; Opanasenko M.; Tian Y.; Konysheva K.; Shvets O.; Morris R. E.; Čejka J. Germanosilicate Precursors of ADORable Zeolites Obtained by Disassembly of ITH, ITR, and IWR Zeolites. Chem. Mater. 2014, 26 (19), 5789–5798. 10.1021/cm502953s. DOI
Chlubná-Eliášová P.; Tian Y.; Pinar A. B.; Kubů M.; Čejka J.; Morris R. E. The Assembly-Disassembly-Organization-Reassembly Mechanism for 3D-2D-3D Transformation of Germanosilicate IWW Zeolite. Angew. Chem. 2014, 126 (27), 7168–7172. 10.1002/ange.201400600. PubMed DOI PMC
Roth W. J.; Shvets O. V.; Shamzhy M.; Chlubna′ P.; Kubu° M.; Nachtigall P.; Čejka J. Postsynthesis Transformation of Three-Dimensional Framework into a Lamellar Zeolite with Modifiable Architecture. J. Am. Chem. Soc. 2011, 133 (16), 6130–6133. 10.1021/ja200741r. PubMed DOI
Roth W. J.; Nachtigall P.; Morris R. E.; Wheatley P. S.; Seymour V. R.; Ashbrook S. E.; Chlubná P.; Grajciar L.; Položij M.; Zukal A.; Shvets O.; Čejka J. A Family of Zeolites with Controlled Pore Size Prepared Using a Top-down Method. Nat. Chem. 2013, 5 (7), 628–633. 10.1038/nchem.1662. PubMed DOI
Corma A.; Díaz-Cabañas M. J.; Rey F.; Nicolopoulus S.; Boulahya K. ITQ-15: The First Ultralarge Pore Zeolite with a Bi-Directional Pore System Formed by Intersecting 14- and 12-Ring Channels, and Its Catalytic Implications. Chem. Commun. 2004, 0 (12), 1356–1357. 10.1039/B406572G. PubMed DOI
Corma A.; Fornés V.; Martı′nez-Triguero J.; Pergher S. B. Delaminated Zeolites: Combining the Benefits of Zeolites and Mesoporous Materials for Catalytic Uses. J. Catal. 1999, 186 (1), 57–63. 10.1006/jcat.1999.2503. DOI
Kasneryk V.; Opanasenko M.; Shamzhy M.; Musilová Z.; Avadhut Y. S.; Hartmann M.; Čejka J. Consecutive Interlayer Disassembly–reassembly during Alumination of UOV Zeolites: Insight into the Mechanism. J. Mater. Chem. A 2017, 5 (43), 22576–22587. 10.1039/C7TA05935C. DOI
Kasneryk V.; Shamzhy M.; Opanasenko M.; Wheatley P. S.; Morris S. A.; Russell S. E.; Mayoral A.; Trachta M.; Čejka J.; Morris R. E. Expansion of the ADOR Strategy for the Synthesis of Zeolites: The Synthesis of IPC-12 from Zeolite UOV. Angew. Chem., Int. Ed. 2017, 56 (15), 4324–4327. 10.1002/anie.201700590. PubMed DOI PMC
Firth D. S.; Morris S. A.; Wheatley P. S.; Russell S. E.; Slawin A. M. Z.; Dawson D. M.; Mayoral A.; Opanasenko M.; Položij M.; Čejka J.; Nachtigall P.; Morris R. E. Assembly-Disassembly-Organization-Reassembly Synthesis of Zeolites Based on Cfi-Type Layers. Chem. Mater. 2017, 29 (13), 5605–5611. 10.1021/acs.chemmater.7b01181. DOI
Kamakoti P.; Barckholtz T. A. Role of Germanium in the Formation of Double Four Rings in Zeolites. J. Phys. Chem. C 2007, 111 (9), 3575–3583. 10.1021/jp065092e. DOI
Wheatley P. S.; Čejka J.; Morris R. E. Synthesis of Zeolites Using the ADOR (Assembly-Disassembly-Organization-Reassembly) Route. J. Visualized Exp. 2016, (110), e53463.10.3791/53463. PubMed DOI PMC
Mazur M.; Chlubná-Eliášová P.; Roth W. J.; Čejka J. Intercalation Chemistry of Layered Zeolite Precursor IPC-1P. Catal. Today 2014, 227, 37–44. 10.1016/j.cattod.2013.10.051. DOI
Shamzhy M.; Mazur M.; Opanasenko M.; Roth W. J.; Čejka J. Swelling and Pillaring of the Layered Precursor IPC-1P: Tiny Details Determine Everything. Dalton Trans. 2014, 43 (27), 10548.10.1039/c4dt00165f. PubMed DOI
Bignami G. P. M.; Dawson D. M.; Seymour V. R.; Wheatley P. S.; Morris R. E.; Ashbrook S. E. Synthesis, Isotopic Enrichment, and Solid-State NMR Characterization of Zeolites Derived from the Assembly, Disassembly, Organization, Reassembly Process. J. Am. Chem. Soc. 2017, 139 (14), 5140–5148. 10.1021/jacs.7b00386. PubMed DOI PMC
Morris S. A.; Bignami G. P. M.; Tian Y.; Navarro M.; Firth D. S.; Čejka J.; Wheatley P. S.; Dawson D. M.; Slawinski W. A.; Wragg D. S.; Morris R. E.; Ashbrook S. E. In Situ Solid-State NMR and XRD Studies of the ADOR Process and the Unusual Structure of Zeolite IPC-6. Nat. Chem. 2017, 9, 1012.10.1038/nchem.2761. PubMed DOI
Henkelis S. E.; Morris S. A.; Mazur M.; Wheatley P. S.; McHugh L. N.; Morris R. E. Monitoring the Assembly–disassembly–organisation–reassembly Process of Germanosilicate UTL through in Situ Pair Distribution Function Analysis. J. Mater. Chem. A 2018, 6 (35), 17011–17018. 10.1039/C8TA04320E. DOI
Morris S. A.; Wheatley P. S.; Položij M.; Nachtigall P.; Eliášová P.; Čejka J.; Lucas T. C.; Hriljac J. A.; Pinar A. B.; Morris R. E. Combined PDF and Rietveld Studies of ADORable Zeolites and the Disordered Intermediate IPC-1P. Dalt. Trans. 2016, 45 (36), 14124–14130. 10.1039/C6DT02612E. PubMed DOI
Wheatley P. S.; Chlubná-Eliášová P.; Greer H.; Zhou W.; Seymour V. R.; Dawson D. M.; Ashbrook S. E.; Pinar A. B.; McCusker L. B.; Opanasenko M.; Čejka J.; Morris R. E. Zeolites with Continuously Tuneable Porosity. Angew. Chem., Int. Ed. 2014, 53 (48), 13210–13214. 10.1002/anie.201407676. PubMed DOI PMC
Evans J. S. O.; Price S. J.; Wong H. V.; O’Hare D. Kinetic Study of the Intercalation of Cobaltocene by Layered Metal Dichalcogenides with Time-Resolved in Situ X-Ray Powder Diffraction. J. Am. Chem. Soc. 1998, 120 (42), 10837–10846. 10.1021/ja9819099. DOI
Du Y.; O ’hare D. Observation of Staging during Intercalation in Layered R-Cobalt Hydroxides: A Synthetic and Kinetic Study. Inorg. Chem. 2008, 47, 11839–11846. 10.1021/ic801639e. PubMed DOI
Barroso-Bujans F.; Alegria A. Kinetic Differences in the Intercalation of Linear and Cyclic Penta(ethylene Oxide)s into Graphite Oxide Leading to Separation by Topology. Phys. Chem. Chem. Phys. 2017, 19 (28), 18366–18371. 10.1039/C7CP03114A. PubMed DOI
Norby P. Hydrothermal Conversion of Zeolites: An in Situ Synchrotron X-Ray Powder Diffraction Study. J. Am. Chem. Soc. 1997, 119 (22), 5215–5221. 10.1021/ja964245g. DOI
Rahbani J.; Khashab N. M.; Patra D.; Al-Ghoul M. Kinetics and Mechanism of Ionic Intercalation/de-Intercalation during the Formation of α-Cobalt Hydroxide and Its Polymorphic Transition to β-Cobalt Hydroxide: Reaction–diffusion Framework. J. Mater. Chem. 2012, 22 (32), 16361.10.1039/c2jm31694c. DOI
Saliba D.; Al-Ghoul M. Kinetics of Intercalation of Fluorescent Probes in Magnesium-Aluminium Layered Double Hydroxide within a Multiscale Reaction-Diffusion Framework. Philos. Trans. R. Soc., A 2016, 374 (2080), 20160138.10.1098/rsta.2016.0138. PubMed DOI PMC
Ragavan A.; Khan A.; O’Hare D. Selective Intercalation of Chlorophenoxyacetates into the Layered Double Hydroxide [LiAl2(OH)6]Cl·xH2O. J. Mater. Chem. 2006, 16 (42), 4155–4159. 10.1039/B610766D. DOI
Duan X.; Evans D. G.; David G.. Layered Double Hydroxides; Springer, 2005.
Millini R.; Bellussi G.; Smeets S.; Xiaodong Z.; Strohmaier K.. Zeolites in Catalysis: Properties and Applications; Čejka J., Morris R. E., Nachtigall P., Eds.; Royal Society of Chemistry: Croydon, 2017.
Henkelis S. E.; Mazur M.; Rice C. M.; Bignami G. P. M.; Wheatley P. S.; Ashbrook S. E.; Čejka J.; Morris R. E. A Procedure for Identifying Possible Products in the Assembly–disassembly–organization–reassembly (ADOR) Synthesis of Zeolites. Nat. Protoc. 2019, 10.1038/s41596-018-0114-6. PubMed DOI
Catching a New Zeolite as a Transition Material during Deconstruction
Reverse ADOR: reconstruction of UTL zeolite from layered IPC-1P