Kinetics and Mechanism of the Hydrolysis and Rearrangement Processes within the Assembly-Disassembly-Organization-Reassembly Synthesis of Zeolites

. 2019 Mar 13 ; 141 (10) : 4453-4459. [epub] 20190304

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30786710

The hydrolysis (disassembly, D) and rearrangement (organization, O) steps of the assembly-disassembly-organization-reassembly (ADOR) process for the synthesis of zeolites have been studied. Germanium-rich UTL was subjected to hydrolysis conditions in water to understand the effects of temperature (100, 92, 85, 81, 77, and 70 °C). Samples were taken periodically over an 8-37 h period, and each sample was analyzed by powder X-ray diffraction. The results show that the hydrolysis step is solely dependent on the presence of liquid water, whereas the rearrangement is dependent on the temperature of the system. The kinetics have been investigated using the Avrami-Erofeev model. With increasing temperature, an increase in the rate of reaction for the rearrangement step was observed, and the Arrhenius equation was used to ascertain an apparent activation energy for the rearrangement from the kinetic product of the disassembly (IPC-1P) to the thermodynamic product of the rearrangement (IPC-2P). From this information, a mechanism for this transformation can be postulated.

Zobrazit více v PubMed

Eliášová P.; Opanasenko M. V.; Wheatley P. S.; Shamzhy M. V.; Mazur M.; Nachtigall P.; Roth W. J.; Morris R. E.; Čejka J. The ADOR Mechanism for the Synthesis of New Zeolites. Chem. Soc. Rev. 2015, 44 (20), 7177–7206. 10.1039/C5CS00045A. PubMed DOI

Mazur M.; Wheatley P. S.; Navarro M.; Roth W. J.; Položij M.; Mayoral A.; Eliášová P.; Nachtigall P.; Čejka J.; Morris R. E. Synthesis of “unfeasible” Zeolites. Nat. Chem. 2016, 8 (1), 58–62. 10.1038/nchem.2374. PubMed DOI

Opanasenko M. V.; Roth W. J.; Čejka J. Two-Dimensional Zeolites in Catalysis: Current Status and Perspectives. Catal. Sci. Technol. 2016, 6 (8), 2467–2484. 10.1039/C5CY02079D. DOI

Shamzhy M.; Opanasenko M.; Tian Y.; Konysheva K.; Shvets O.; Morris R. E.; Čejka J. Germanosilicate Precursors of ADORable Zeolites Obtained by Disassembly of ITH, ITR, and IWR Zeolites. Chem. Mater. 2014, 26 (19), 5789–5798. 10.1021/cm502953s. DOI

Chlubná-Eliášová P.; Tian Y.; Pinar A. B.; Kubů M.; Čejka J.; Morris R. E. The Assembly-Disassembly-Organization-Reassembly Mechanism for 3D-2D-3D Transformation of Germanosilicate IWW Zeolite. Angew. Chem. 2014, 126 (27), 7168–7172. 10.1002/ange.201400600. PubMed DOI PMC

Roth W. J.; Shvets O. V.; Shamzhy M.; Chlubna′ P.; Kubu° M.; Nachtigall P.; Čejka J. Postsynthesis Transformation of Three-Dimensional Framework into a Lamellar Zeolite with Modifiable Architecture. J. Am. Chem. Soc. 2011, 133 (16), 6130–6133. 10.1021/ja200741r. PubMed DOI

Roth W. J.; Nachtigall P.; Morris R. E.; Wheatley P. S.; Seymour V. R.; Ashbrook S. E.; Chlubná P.; Grajciar L.; Položij M.; Zukal A.; Shvets O.; Čejka J. A Family of Zeolites with Controlled Pore Size Prepared Using a Top-down Method. Nat. Chem. 2013, 5 (7), 628–633. 10.1038/nchem.1662. PubMed DOI

Corma A.; Díaz-Cabañas M. J.; Rey F.; Nicolopoulus S.; Boulahya K. ITQ-15: The First Ultralarge Pore Zeolite with a Bi-Directional Pore System Formed by Intersecting 14- and 12-Ring Channels, and Its Catalytic Implications. Chem. Commun. 2004, 0 (12), 1356–1357. 10.1039/B406572G. PubMed DOI

Corma A.; Fornés V.; Martı′nez-Triguero J.; Pergher S. B. Delaminated Zeolites: Combining the Benefits of Zeolites and Mesoporous Materials for Catalytic Uses. J. Catal. 1999, 186 (1), 57–63. 10.1006/jcat.1999.2503. DOI

Kasneryk V.; Opanasenko M.; Shamzhy M.; Musilová Z.; Avadhut Y. S.; Hartmann M.; Čejka J. Consecutive Interlayer Disassembly–reassembly during Alumination of UOV Zeolites: Insight into the Mechanism. J. Mater. Chem. A 2017, 5 (43), 22576–22587. 10.1039/C7TA05935C. DOI

Kasneryk V.; Shamzhy M.; Opanasenko M.; Wheatley P. S.; Morris S. A.; Russell S. E.; Mayoral A.; Trachta M.; Čejka J.; Morris R. E. Expansion of the ADOR Strategy for the Synthesis of Zeolites: The Synthesis of IPC-12 from Zeolite UOV. Angew. Chem., Int. Ed. 2017, 56 (15), 4324–4327. 10.1002/anie.201700590. PubMed DOI PMC

Firth D. S.; Morris S. A.; Wheatley P. S.; Russell S. E.; Slawin A. M. Z.; Dawson D. M.; Mayoral A.; Opanasenko M.; Položij M.; Čejka J.; Nachtigall P.; Morris R. E. Assembly-Disassembly-Organization-Reassembly Synthesis of Zeolites Based on Cfi-Type Layers. Chem. Mater. 2017, 29 (13), 5605–5611. 10.1021/acs.chemmater.7b01181. DOI

Kamakoti P.; Barckholtz T. A. Role of Germanium in the Formation of Double Four Rings in Zeolites. J. Phys. Chem. C 2007, 111 (9), 3575–3583. 10.1021/jp065092e. DOI

Wheatley P. S.; Čejka J.; Morris R. E. Synthesis of Zeolites Using the ADOR (Assembly-Disassembly-Organization-Reassembly) Route. J. Visualized Exp. 2016, (110), e53463.10.3791/53463. PubMed DOI PMC

Mazur M.; Chlubná-Eliášová P.; Roth W. J.; Čejka J. Intercalation Chemistry of Layered Zeolite Precursor IPC-1P. Catal. Today 2014, 227, 37–44. 10.1016/j.cattod.2013.10.051. DOI

Shamzhy M.; Mazur M.; Opanasenko M.; Roth W. J.; Čejka J. Swelling and Pillaring of the Layered Precursor IPC-1P: Tiny Details Determine Everything. Dalton Trans. 2014, 43 (27), 10548.10.1039/c4dt00165f. PubMed DOI

Bignami G. P. M.; Dawson D. M.; Seymour V. R.; Wheatley P. S.; Morris R. E.; Ashbrook S. E. Synthesis, Isotopic Enrichment, and Solid-State NMR Characterization of Zeolites Derived from the Assembly, Disassembly, Organization, Reassembly Process. J. Am. Chem. Soc. 2017, 139 (14), 5140–5148. 10.1021/jacs.7b00386. PubMed DOI PMC

Morris S. A.; Bignami G. P. M.; Tian Y.; Navarro M.; Firth D. S.; Čejka J.; Wheatley P. S.; Dawson D. M.; Slawinski W. A.; Wragg D. S.; Morris R. E.; Ashbrook S. E. In Situ Solid-State NMR and XRD Studies of the ADOR Process and the Unusual Structure of Zeolite IPC-6. Nat. Chem. 2017, 9, 1012.10.1038/nchem.2761. PubMed DOI

Henkelis S. E.; Morris S. A.; Mazur M.; Wheatley P. S.; McHugh L. N.; Morris R. E. Monitoring the Assembly–disassembly–organisation–reassembly Process of Germanosilicate UTL through in Situ Pair Distribution Function Analysis. J. Mater. Chem. A 2018, 6 (35), 17011–17018. 10.1039/C8TA04320E. DOI

Morris S. A.; Wheatley P. S.; Položij M.; Nachtigall P.; Eliášová P.; Čejka J.; Lucas T. C.; Hriljac J. A.; Pinar A. B.; Morris R. E. Combined PDF and Rietveld Studies of ADORable Zeolites and the Disordered Intermediate IPC-1P. Dalt. Trans. 2016, 45 (36), 14124–14130. 10.1039/C6DT02612E. PubMed DOI

Wheatley P. S.; Chlubná-Eliášová P.; Greer H.; Zhou W.; Seymour V. R.; Dawson D. M.; Ashbrook S. E.; Pinar A. B.; McCusker L. B.; Opanasenko M.; Čejka J.; Morris R. E. Zeolites with Continuously Tuneable Porosity. Angew. Chem., Int. Ed. 2014, 53 (48), 13210–13214. 10.1002/anie.201407676. PubMed DOI PMC

Evans J. S. O.; Price S. J.; Wong H. V.; O’Hare D. Kinetic Study of the Intercalation of Cobaltocene by Layered Metal Dichalcogenides with Time-Resolved in Situ X-Ray Powder Diffraction. J. Am. Chem. Soc. 1998, 120 (42), 10837–10846. 10.1021/ja9819099. DOI

Du Y.; O ’hare D. Observation of Staging during Intercalation in Layered R-Cobalt Hydroxides: A Synthetic and Kinetic Study. Inorg. Chem. 2008, 47, 11839–11846. 10.1021/ic801639e. PubMed DOI

Barroso-Bujans F.; Alegria A. Kinetic Differences in the Intercalation of Linear and Cyclic Penta(ethylene Oxide)s into Graphite Oxide Leading to Separation by Topology. Phys. Chem. Chem. Phys. 2017, 19 (28), 18366–18371. 10.1039/C7CP03114A. PubMed DOI

Norby P. Hydrothermal Conversion of Zeolites: An in Situ Synchrotron X-Ray Powder Diffraction Study. J. Am. Chem. Soc. 1997, 119 (22), 5215–5221. 10.1021/ja964245g. DOI

Rahbani J.; Khashab N. M.; Patra D.; Al-Ghoul M. Kinetics and Mechanism of Ionic Intercalation/de-Intercalation during the Formation of α-Cobalt Hydroxide and Its Polymorphic Transition to β-Cobalt Hydroxide: Reaction–diffusion Framework. J. Mater. Chem. 2012, 22 (32), 16361.10.1039/c2jm31694c. DOI

Saliba D.; Al-Ghoul M. Kinetics of Intercalation of Fluorescent Probes in Magnesium-Aluminium Layered Double Hydroxide within a Multiscale Reaction-Diffusion Framework. Philos. Trans. R. Soc., A 2016, 374 (2080), 20160138.10.1098/rsta.2016.0138. PubMed DOI PMC

Ragavan A.; Khan A.; O’Hare D. Selective Intercalation of Chlorophenoxyacetates into the Layered Double Hydroxide [LiAl2(OH)6]Cl·xH2O. J. Mater. Chem. 2006, 16 (42), 4155–4159. 10.1039/B610766D. DOI

Duan X.; Evans D. G.; David G.. Layered Double Hydroxides; Springer, 2005.

Millini R.; Bellussi G.; Smeets S.; Xiaodong Z.; Strohmaier K.. Zeolites in Catalysis: Properties and Applications; Čejka J., Morris R. E., Nachtigall P., Eds.; Royal Society of Chemistry: Croydon, 2017.

Henkelis S. E.; Mazur M.; Rice C. M.; Bignami G. P. M.; Wheatley P. S.; Ashbrook S. E.; Čejka J.; Morris R. E. A Procedure for Identifying Possible Products in the Assembly–disassembly–organization–reassembly (ADOR) Synthesis of Zeolites. Nat. Protoc. 2019, 10.1038/s41596-018-0114-6. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Catching a New Zeolite as a Transition Material during Deconstruction

. 2023 Apr 26 ; 145 (16) : 9081-9091. [epub] 20230411

Reverse ADOR: reconstruction of UTL zeolite from layered IPC-1P

. 2021 Apr 02 ; 2 (12) : 3862-3870. [epub] 20210402

Mechanochemically assisted hydrolysis in the ADOR process

. 2020 Jul 21 ; 11 (27) : 7060-7069. [epub] 20200615

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...