Reverse ADOR: reconstruction of UTL zeolite from layered IPC-1P
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
34223168
PubMed Central
PMC8216593
DOI
10.1039/d1ma00212k
PII: d1ma00212k
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The assembly-disassembly-organisation-reassembly (ADOR) process has led to the discovery of numerous zeolite structures, albeit limited to materials with decreased pore size in relation to the parent germanosilicate zeolite. This limitation stems from the rapid decrease in d-spacing upon hydrolysis (disassembly). Nevertheless, we have artificially increased the d-spacing of layered IPC-1P by intercalating organic species. Furthermore, we have reconstructed double four rings (D4R) between layers, thus transforming IPC-1P back into the parent UTL zeolite. This reconstruction has provided not only germanosilicate but also a new, high-silica UTL zeolite (Si/Ge = 481). Therefore, our "reverse ADOR" opens up new synthetic routes towards promising extra-large-pore zeolite-based materials with new chemical compositions.
Zobrazit více v PubMed
Čejka J., van Bekkum H., Corma A. and Schueth F., Introduction to Zeolite Molecular Sieves, Elsevier, Amsterdam, 2007
Čejka J., Morris E. R. and Nachtigall P., Zeolites in Catalysis: Properties and Applications, The Royal Society of Chemistry, 2017
Vermeiren W. Gilson J. P. Impact of zeolites on the petroleum and petrochemical industry. Top. Catal. 2009;52:1131–1161.
Prech J. Pizarro P. Serrano D. P. Cejka J. From 3D to 2D zeolite catalytic materials. Chem. Soc. Rev. 2018;47:8263–8306. PubMed
Ennaert T. Van Aelst J. Dijkmans J. De Clercq R. Schutyser W. Dusselier M. Verboekend D. Sels B. F. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Chem. Soc. Rev. 2016;45:584–611. PubMed
Sudarsanam P. Peeters E. Makshina E. V. Parvulescu V. I. Sels B. F. Advances in porous and nanoscale catalysts for viable biomass conversion. Chem. Soc. Rev. 2019;48:2366–2421. PubMed
Taarning E. Osmundsen C. M. Yang X. Voss B. Andersen S. I. Christensen C. H. Zeolite-catalyzed biomass conversion to fuels and chemicals. Energy Environ. Sci. 2011;4:793–804.
Shamzhy M. Opanasenko M. Concepción P. Martínez A. New trends in tailoring active sites in zeolite-based catalysts. Chem. Soc. Rev. 2019;48:1095–1149. PubMed
Chen L.-H. Sun M.-H. Wang Z. Yang W. Xie Z. Su B.-L. Hierarchically Structured Zeolites: From Design to Application. Chem. Rev. 2020;120:11194–11294. PubMed
Cundy C. S. Cox P. A. The Hydrothermal Synthesis of Zeolites: History and Development from the Earliest Days to the Present Time. Chem. Rev. 2003;103:663–702. PubMed
Yu J., Synthesis of Zeolites, in Studies in Surface Science and Catalysis, ed. J. Čejka, H. van Bekkum, A. Corma and F. Schüth, Elsevier, 2007, pp. 39–103
Eliášová P. Opanasenko M. Wheatley P. S. Shamzhy M. Mazur M. Nachtigall P. Roth W. J. Morris R. E. Čejka J. The ADOR mechanism for the synthesis of new zeolites. Chem. Soc. Rev. 2015;44:7177–7206. PubMed
Firth D. S. Morris S. A. Wheatley P. S. Russell S. E. Slawin A. M. Z. Dawson D. M. Mayoral A. Opanasenko M. Položij M. Čejka J. Nachtigall P. Morris R. E. Assembly–Disassembly–Organization–Reassembly Synthesis of Zeolites Based on cfi-Type Layers. Chem. Mater. 2017;29:5605–5611.
Opanasenko M. Shamzhy M. Wang Y. Yan W. Nachtigall P. Čejka J. Synthesis and Post-Synthesis Transformation of Germanosilicate Zeolites. Angew. Chem., Int. Ed. 2020;59:19380–19389. PubMed
Heard C. J. Grajciar L. Uhlík F. Shamzhy M. Opanasenko M. Čejka J. Nachtigall P. Zeolite (In)Stability under Aqueous or Steaming Conditions. Adv. Mater. 2020;32:2003264. PubMed
Roth W. J. Shvets O. V. Shamzhy M. Chlubna P. Kubu M. Nachtigall P. Čejka J. Postsynthesis Transformation of Three-Dimensional Framework into a Lamellar Zeolite with Modifiable Architecture. J. Am. Chem. Soc. 2011;133:6130–6133. PubMed
Roth W. J. Nachtigall P. Morris R. E. Wheatley P. S. Seymour V. R. Ashbrook S. E. Chlubna P. Grajciar L. Polozij M. Zukal A. Shvets O. Čejka J. A family of zeolites with controlled pore size prepared using a top-down method. Nat. Chem. 2013;5:628–633. PubMed
Wheatley P. S. Chlubná-Eliášová P. Greer H. Zhou W. Seymour V. R. Dawson D. M. Ashbrook S. E. Pinar A. B. McCusker L. B. Opanasenko M. Čejka J. Morris R. E. Zeolites with Continuously Tuneable Porosity. Angew. Chem. 2014;126:13426–13430. PubMed PMC
Morris S. A. Bignami G. P. M. Tian Y. Navarro M. Firth D. S. Čejka J. Wheatley P. S. Dawson D. M. Slawinski W. A. Wragg D. S. Morris R. E. Ashbrook S. E. In situ solid-state NMR and XRD studies of the ADOR process and the unusual structure of zeolite IPC-6. Nat. Chem. 2017;9:1012–1018. PubMed
Mazur M. Wheatley P. S. Navarro M. Roth W. J. Položij M. Mayoral A. Eliášová P. Nachtigall P. Čejka J. Morris R. E. Synthesis of ‘unfeasible’ zeolites. Nat. Chem. 2016;8:58–62. PubMed
Henkelis S. E. Mazur M. Rice C. M. Wheatley P. S. Ashbrook S. E. Morris R. E. Kinetics and Mechanism of the Hydrolysis and Rearrangement Processes within the Assembly–Disassembly–Organization–Reassembly Synthesis of Zeolites. J. Am. Chem. Soc. 2019;141:4453–4459. PubMed PMC
Henkelis S. E. Mazur M. Rice C. M. Bignami G. P. M. Wheatley P. S. Ashbrook S. E. Čejka J. Morris R. E. A procedure for identifying possible products in the assembly–disassembly–organization–reassembly (ADOR) synthesis of zeolites. Nat. Protoc. 2019;14:781–794. PubMed
Xu H. Jiang J.-G. Yang B. Zhang L. He M. Wu P. Post-Synthesis Treatment gives Highly Stable Siliceous Zeolites through the Isomorphous Substitution of Silicon for Germanium in Germanosilicates. Angew. Chem., Int. Ed. 2014;53:1355–1359. PubMed
Roth W. J. Makowski W. Marszalek B. Michorczyk P. Skuza W. Gil B. Activity enhancement of zeolite MCM-22 by interlayer expansion enabling higher Ce loading and room temperature CO oxidation. J. Mater. Chem. A. 2014;2:15722–15725.
Wu P. Ruan J. Wang L. Wu L. Wang Y. Liu Y. Fan W. He M. Terasaki O. Tatsumi T. Methodology for Synthesizing Crystalline Metallosilicates with Expanded Pore Windows Through Molecular Alkoxysilylation of Zeolitic Lamellar Precursors. J. Am. Chem. Soc. 2008;130:8178–8187. PubMed
Yang B. Jiang J.-G. Xu H. Wu H. Wu P. Synthesis of Large-Pore ECNU-19 Material (12 × 8-R) via Interlayer-Expansion of HUS-2 Lamellar Silicate. Chin. J. Chem. 2018;36:227–232.
Mazur M. Chlubná-Eliášová P. Roth W. J. Čejka J. Intercalation chemistry of layered zeolite precursor IPC-1P. Catal. Today. 2014;227:37–44.
Shvets O. V. Zukal A. Kasian N. Žilková N. Čejka J. The Role of Crystallization Parameters for the Synthesis of Germanosilicate with UTL Topology. Chem. – Eur. J. 2008;14:10134–10140. PubMed
Roth W. J. Cation size effects in swelling of the layered zeolite precursor MCM-22-P. Pol. J. Chem. 2006;80:703–708.
Chlubna P. Roth W. J. Zukal A. Kubu M. Pavlatova J. Pillared MWW zeolites MCM-36 prepared by swelling MCM-22P in concentrated surfactant solutions. Catal. Today. 2012;179:35–42.
Shamzhy M. Mazur M. Opanasenko M. Roth W. J. Cejka J. Swelling and pillaring of the layered precursor IPC-1P: tiny details determine everything. Dalton Trans. 2014;43:10548–10557. PubMed
Opanasenko M. Parker W. O. N. Shamzhy M. Montanari E. Bellettato M. Mazur M. Millini R. Čejka J. Hierarchical Hybrid Organic–Inorganic Materials with Tunable Textural Properties Obtained Using Zeolitic-Layered Precursor. J. Am. Chem. Soc. 2014;136:2511–2519. PubMed
Baerlocher C. and McCusker L. B., in, Database of Zeolite Structures, http://www.iza-structure.org/databases/
Roth W. J. and Vartuli J. C., Preparation of exfoliated zeolites from layered precursors: The role of pH and nature of intercalating media, in Nanoporous Materials Iii, ed. A. Sayari and M. Jaroniec, 2002, pp. 273–279
Gil B. Mokrzycki Ł. Sulikowski B. Olejniczak Z. Walas S. Desilication of ZSM-5 and ZSM-12 zeolites: Impact on textural, acidic and catalytic properties. Catal. Today. 2010;152:24–32.
Verboekend D. Perez-Ramirez J. Desilication Mechanism Revisited: Highly Mesoporous All-Silica Zeolites Enabled Through Pore-Directing Agents. Chem. – Eur. J. 2011;17:1137–1147. PubMed
Kubů M. Opanasenko M. Shamzy M. Modification of textural and acidic properties of SVR zeolite by desilication. Catal. Today. 2014;227:26–32.
Kubů M. Opanasenko M. Vitvarová D. Desilication of SSZ-33 zeolite – Post-synthesis modification of textural and acidic properties. Catal. Today. 2015;243:46–52.
Blasco T. Corma A. Díaz-Cabañas M. J. Rey F. Vidal-Moya J. A. Zicovich-Wilson C. M. Preferential Location of Ge in the Double Four-Membered Ring Units of ITQ-7 Zeolite. J. Phys. Chem. B. 2002;106:2634–2642.
Kamakoti P. Barckholtz T. A. Role of Germanium in the Formation of Double Four Rings in Zeolites. J. Phys. Chem. C. 2007;111:3575–3583.
Jiang J. Jorda J. L. Diaz-Cabanas M. J. Yu J. Corma A. The Synthesis of an Extra-Large-Pore Zeolite with Double Three-Ring Building Units and a Low Framework Density. Angew. Chem., Int. Ed. 2010;49:4986–4988. PubMed
Corma A. Díaz-Cabañas M. J. Jiang J. Afeworki M. Dorset D. L. Soled S. L. Strohmaier K. G. Extra-large pore zeolite (ITQ-40) with the lowest framework density containing double four- and double three-rings. Proc. Natl. Acad. Sci. U. S. A. 2010;107:13997–14002. PubMed PMC
Fischer M. and Freymann L., Local Distortions in a Prototypical Zeolite Framework Containing Double Four-Ring Cages: The Role of Framework Composition and Organic Guests**, ChemPhysChem, n/a PubMed PMC
Schneider D. Mehlhorn D. Zeigermann P. Kärger J. Valiullin R. Transport properties of hierarchical micro–mesoporous materials. Chem. Soc. Rev. 2016;45:3439–3467. PubMed