The assembly-disassembly-organization-reassembly mechanism for 3D-2D-3D transformation of germanosilicate IWW zeolite
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
24825119
PubMed Central
PMC4320762
DOI
10.1002/anie.201400600
Knihovny.cz E-zdroje
- Klíčová slova
- ADOR, IWW, germanosilicate, solid-state transformation, zeolites,
- Publikační typ
- časopisecké články MeSH
Hydrolysis of germanosilicate zeolites with the IWW structure shows two different outcomes depending on the composition of the starting materials. Ge-rich IWW (Si/Ge=3.1) is disassembled into a layered material (IPC-5P), which can be reassembled into an almost pure silica IWW on treatment with diethoxydimethylsilane. Ge-poor IWW (Si/Ge=6.4) is not completely disassembled on hydrolysis, but retains some 3D connectivity. This structure can be reassembled into IWW by incorporation of Al to fill the defects left when the Ge is removed.
Zobrazit více v PubMed
Roth WJ, Shvets OV, Shamzhy M, Chlubná P, Kubů M, Nachtigall P, Čejka J. J. Am. Chem. Soc. 2011;133:6130–6133. PubMed
Chlubná P, Roth WJ, Greer HF, Zhou W, Shvets OV, Zukal A, Čejka J, Morris RE. Chem. Mater. 2013;25:542–547.
Roth WJ, Nachtigall P, Morris RE, Wheatley PS, Seymour VR, Ashbrook SE, Chlubná P, Grajciar L, Položij M, Zukal A, Shvets O, Čejka J. Nat. Chem. 2013;5:628–633. PubMed
Verheyen E, Joos L, Van Havenbergh K, Breynaert E, Kasian N, Gobechiya E, Houthoofd K, Martineau C, Hinterstein M, Taulelle F, Van Speybroeck V, Waroquier M, Bals S, Van Tendeloo G, Kirschhock CEA, Martens JA. Nat. Mater. 2012;11:1059–1064. PubMed
IZA Structure Commission Web site http://www.iza-structure.org/default.htm.
Blasco T, Corma A, Diaz-Cabanas MJ, Rey F, Vidal-Moya JA, Zicovich-Wilson CMJ. Phys. Chem. B. 2002;106:2634–2642.
Corma A, Diaz-Cabanas M, Martinez-Triguero J, Rey F, Rius J. Nature. 2002;418:514–516. PubMed
Pulido A, Sastre G, Corma A. ChemPhysChem. 2006;7:1092–1099. PubMed
Corma A, Rey F, Valencia S, Jorda JL, Rius J. Nat. Mater. 2003;2:493–497. PubMed
Roth WJ, Čejka J. Catal. Sci. Technol. 2011;1:43–53.
Roth WJ, Nachtigall P, Morris RE, Čejka J. Chem. Rev. DOI: 10.1021/cr400600f. PubMed DOI
Roth WJ, Vartuli JC, Kresge CT. Stud. Surf. Sci. Catal. 2000;129:501–508.
Kosslick H, Tuan VA, Fricke R, Peuker C, Pilz W, Storek W. J. Phys. Chem. 1993;97:5678–5684.
Gao F, Jaber M, Bozhilov K, Vicente A, Fernandez C, Valtchev V. J. Am. Chem. Soc. 2009;131:16580–16586. PubMed
Hu X, Jiang J, Yang B, Zhang L, He M, Wu P. Angew. Chem. 2014;126:1379–1383.
Angew. Chem. Int. Ed. 2014;53
Burel L, Kasian N, Tuel A. Angew. Chem. 2014;126 PubMed
Angew. Chem. Int. Ed. 2014;53 Recently, two manuscripts were published on the similar topic, removing Ge from germanosilicates (like UTL, IWR) and replacing it by Si making it more stable: This proves the topicality of such chemistry, especially when the incorporation of catalytically active centers can be achieved.
Loewenstein W. Am. Mineral. 1954;39:92–96.
ADOR zeolite with 12 × 8 × 8-ring pores derived from IWR germanosilicate
Mechanochemically assisted hydrolysis in the ADOR process
Vapour-phase-transport rearrangement technique for the synthesis of new zeolites
Synthesis of Zeolites Using the ADOR (Assembly-Disassembly-Organization-Reassembly) Route
Synthesis of 'unfeasible' zeolites
Exploiting chemically selective weakness in solids as a route to new porous materials