Exploiting chemically selective weakness in solids as a route to new porous materials

. 2015 May ; 7 (5) : 381-8.

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25901815

Weakness in a material, especially when challenged by chemical, mechanical or physical stimuli, is often viewed as something extremely negative. There are countless examples in which interesting-looking materials have been dismissed as being too unstable for an application. But instability with respect to a stimulus is not always a negative point. In this Perspective we highlight situations where weakness in a material can be used as a synthetic tool to prepare materials that, at present, are difficult or even impossible to prepare using traditional synthetic approaches. To emphasize the concept, we will draw upon examples in the field of nanoporous materials, concentrating on metal-organic frameworks and zeolites, but the general concepts are likely to be applicable across a wide range of materials chemistry. In zeolite chemistry, there is a particular problem with accessing hypothetical structures that this approach may solve.

Zobrazit více v PubMed

Science. 2004 May 14;304(5673):990-2 PubMed

Angew Chem Int Ed Engl. 2014 Apr 25;53(18):4530-40 PubMed

Angew Chem Int Ed Engl. 2004 Apr 26;43(18):2334-75 PubMed

Science. 2011 Aug 26;333(6046):1134-7 PubMed

Chem Rev. 2014 May 14;114(9):4807-37 PubMed

Phys Chem Chem Phys. 2007 Sep 21;9(35):4854-78 PubMed

Angew Chem Int Ed Engl. 2010 Apr 19;49(18):3120-45 PubMed

Angew Chem Int Ed Engl. 2012 Jan 16;51(3):652-5 PubMed

Dalton Trans. 2014 Jul 21;43(27):10501-11 PubMed

Dalton Trans. 2014 Jul 21;43(27):10417-29 PubMed

Nature. 2002 Jun 20;417(6891):813-21 PubMed

Chem Soc Rev. 2009 May;38(5):1315-29 PubMed

Chemphyschem. 2014 Oct 6;15(14):2972-6 PubMed

Angew Chem Int Ed Engl. 2008;47(27):4966-81 PubMed

Science. 2014 Jan 10;343(6167):167-70 PubMed

Angew Chem Int Ed Engl. 2014 Jul 1;53(27):7048-52 PubMed

Dalton Trans. 2014 Jan 28;43(4):1519-23 PubMed

Angew Chem Int Ed Engl. 2010 Jul 5;49(29):4986-8 PubMed

Nat Mater. 2003 Jul;2(7):493-7 PubMed

J Am Chem Soc. 2013 Aug 7;135(31):11465-8 PubMed

Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10186-91 PubMed

Chem Rev. 2012 Feb 8;112(2):970-1000 PubMed

Angew Chem Int Ed Engl. 2013 Feb 4;52(6):1673-7 PubMed

Nat Chem. 2009 Jul;1(4):289-94 PubMed

Angew Chem Int Ed Engl. 2014 Jan 27;53(5):1360-3 PubMed

Chem Rev. 2014 Jul 23;114(14):7268-316 PubMed

Nature. 2009 Apr 30;458(7242):1154-7 PubMed

J Am Chem Soc. 2008 May 28;130(21):6774-80 PubMed

J Am Chem Soc. 2014 Jan 29;136(4):1462-71 PubMed

J Am Chem Soc. 2009 Nov 4;131(43):15834-42 PubMed

Phys Chem Chem Phys. 2011 Jul 21;13(27):12407-12 PubMed

Science. 2010 Aug 27;329(5995):1053-7 PubMed

Chemistry. 2004 Mar 19;10(6):1373-82 PubMed

J Am Chem Soc. 2014 Jan 29;136(4):1449-61 PubMed

Chem Soc Rev. 2014 Nov 21;43(22):7548-61 PubMed

Angew Chem Int Ed Engl. 2004 Nov 12;43(44):5880-2 PubMed

Chemistry. 2012 Dec 21;18(52):16642-8 PubMed

Chem Commun (Camb). 2004 Jun 21;(12):1356-7 PubMed

J Am Chem Soc. 2010 Jan 20;132(2):667-78 PubMed

Nat Chem. 2010 Nov;2(11):944-8 PubMed

Nat Mater. 2012 Dec;11(12):1059-64 PubMed

J Am Chem Soc. 2011 Apr 27;133(16):6130-3 PubMed

J Am Chem Soc. 2010 Mar 17;132(10):3605-11 PubMed

Chem Soc Rev. 2008 Jan;37(1):191-214 PubMed

Nat Chem. 2011 Apr;3(4):304-10 PubMed

J Am Chem Soc. 2013 May 22;135(20):7621-8 PubMed

J Am Chem Soc. 2013 Jan 16;135(2):598-601 PubMed

Nat Chem. 2013 Jul;5(7):628-33 PubMed

J Am Chem Soc. 2002 Nov 13;124(45):13519-26 PubMed

Nat Chem. 2009 Dec;1(9):695-704 PubMed

Angew Chem Int Ed Engl. 2014 Nov 24;53(48):13210-4 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...