ADOR zeolite with 12 × 8 × 8-ring pores derived from IWR germanosilicate
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38178865
PubMed Central
PMC10763919
DOI
10.1039/d3ta06161b
PII: d3ta06161b
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Zeolites have been well known for decades as catalytic materials and adsorbents and are traditionally prepared using the bottom-up synthesis method. Although it was productive for more than 250 zeolite frameworks, the conventional solvothermal synthesis approach provided limited control over the structural characteristics of the formed materials. In turn, the discovery and development of the Assembly-Disassembly-Organization-Reassembly (ADOR) strategy for the regioselective manipulation of germanosilicates enabled the synthesis of previously unattainable zeolites with predefined structures. To date, the family tree of ADOR materials has included the topological branches of UTL, UOV, IWW, *CTH, and IWV zeolites. Herein, we report on the expansion of ADOR zeolites with a new branch related to the IWR topology, which is yet unattainable experimentally but theoretically predicted as highly promising adsorbents for CO2 separation applications. The optimization of not only the chemical composition but also the dimensions of the crystalline domain in the parent IWR zeolite in the Assembly step was found to be the key to the success of its ADOR transformation into previously unknown IPC-17 zeolite with an intersecting 12 × 8 × 8-ring pore system. The structure of the as-prepared IPC-17 zeolite was verified by a combination of microscopic and diffraction techniques, while the results on the epichlorohydrin ring-opening with alcohols of variable sizes proved the molecular sieving ability of IPC-17 with potential application in heterogeneous catalysis. The proposed synthesis strategy may facilitate the discovery of zeolite materials that are difficult or yet impossible to achieve using a traditional bottom-up synthesis approach.
Zobrazit více v PubMed
Li Y. Li L. Yu J. H. Applications of Zeolites in Sustainable Chemistry. Chem. 2017;3:928–949.
Grand J. Awala H. Mintova S. Mechanism of zeolites crystal growth: new findings and open questions. CrystEngComm. 2016;18:650–664. doi: 10.1039/C5CE02286J. DOI
Opanasenko M. Shamzhy M. Wang Y. Yan W. Nachtigall P. Čejka J. Synthesis and Post-Synthesis Transformation of Germanosilicate Zeolites. Angew. Chem., Int. Ed. 2020;59:19380–19389. doi: 10.1002/anie.202005776. PubMed DOI
Roth W. J. Nachtigall P. Morris R. E. Wheatley P. S. Seymour V. R. Ashbrook S. E. Chlubná P. Grajciar L. Položij M. Zukal A. Shvets O. Čejka J. A family of zeolites with controlled pore size prepared using a top-down method. Nat. Chem. 2013;5:628–633. doi: 10.1038/nchem.1662. PubMed DOI
Trachta M. Nachtigall P. Bludský O. The ADOR synthesis of new zeolites: In silico investigation. Catal. Today. 2015;243:32–38. doi: 10.1016/j.cattod.2014.07.041. DOI
Eliášová P. Opanasenko M. Wheatley P. S. Shamzhy M. Mazur M. Nachtigall P. Roth W. J. Morris R. E. Čejka J. The ADOR mechanism for the synthesis of new zeolites. Chem. Soc. Rev. 2015;44:7177–7206. doi: 10.1039/C5CS00045A. PubMed DOI
Mazur M. Wheatley P. S. Navarro M. Roth W. J. Položij M. Mayoral A. Eliášová P. Nachtigall P. Čejka J. Morris R. E. Synthesis of ‘unfeasible’ zeolites. Nat. Chem. 2016;8:58–62. doi: 10.1038/nchem.2374. PubMed DOI
Zhou Y. Kadam S. A. Shamzhy M. Čejka J. Opanasenko M. Isoreticular UTL-Derived Zeolites as Model Materials for Probing Pore Size–Activity Relationship. ACS Catal. 2019;9:5136–5146. doi: 10.1021/acscatal.9b00950. DOI
Kasneryk V. Shamzhy M. Opanasenko M. Wheatley P. S. Morris S. A. Russell S. E. Mayoral A. Trachta M. Čejka J. Morris R. E. Expansion of the ADOR Strategy for the Synthesis of Zeolites: The Synthesis of IPC-12 from Zeolite UOV. Angew. Chem., Int. Ed. 2017;56:4324–4327. doi: 10.1002/anie.201700590. PubMed DOI PMC
Firth D. S. Morris S. A. Wheatley P. S. Russell S. E. Slawin A. M. Z. Dawson D. M. Mayoral A. Opanasenko M. Položij M. Čejka J. Nachtigall P. Morris R. E. Assembly–Disassembly–Organization–Reassembly Synthesis of Zeolites Based on cfi-Type Layers. Chem. Mater. 2017;29:5605–5611. doi: 10.1021/acs.chemmater.7b01181. DOI
Liu X. Mao W. Jiang J. Lu X. Peng M. Xu H. Han L. Che S.-A. Wu P. Topotactic Conversion of Alkali-Treated Intergrown Germanosilicate CIT-13 into Single-Crystalline ECNU-21 Zeolite as Shape-Selective Catalyst for Ethylene Oxide Hydration. Chem.–Eur. J. 2019;25:4520–4529. doi: 10.1002/chem.201900173. PubMed DOI
Kasneryk V. Shamzhy M. Zhou J. Yue Q. Mazur M. Mayoral A. Luo Z. Morris R. E. Čejka J. Opanasenko M. Vapour-phase-transport rearrangement technique for the synthesis of new zeolites. Nat. Commun. 2019;10:5129. doi: 10.1038/s41467-019-12882-3. PubMed DOI PMC
Lu K. Huang J. Jiao M. Zhao Y. Ma Y. Jiang J. Xu H. Ma Y. Wu P. Topotactic conversion of Ge-rich IWW zeolite into IPC-18 under mild condition. Microporous Mesoporous Mater. 2021;310:110617. doi: 10.1016/j.micromeso.2020.110617. DOI
Yue Q. Steciuk G. Mazur M. Zhang J. Petrov O. Shamzhy M. Liu M. Palatinus L. Čejka J. Opanasenko M. Catching a New Zeolite as a Transition Material during Deconstruction. J. Am. Chem. Soc. 2023;145:9081–9091. doi: 10.1021/jacs.3c00423. PubMed DOI PMC
Shamzhy M. Opanasenko M. Tian Y. Konysheva K. Shvets O. Morris R. E. Čejka J. Germanosilicate Precursors of ADORable Zeolites Obtained by Disassembly of ITH, ITR, and IWR Zeolites. Chem. Mater. 2014;26:5789–5798. doi: 10.1021/cm502953s. DOI
Castañeda R. Corma A. Fornés V. Rey F. Rius J. Synthesis of a New Zeolite Structure ITQ-24, with Intersecting 10- and 12-Membered Ring Pores. J. Am. Chem. Soc. 2003;125:7820–7821. doi: 10.1021/ja035534p. PubMed DOI
Pinar A. B. McCusker L. B. Baerlocher C. Schmidt J. Hwang S. J. Davis M. E. Zones S. I. Location of Ge and extra-framework species in the zeolite ITQ-24. Dalton Trans. 2015;44:6288–6295. doi: 10.1039/C4DT03831B. PubMed DOI
Jorda J. L. Cantin A. Corma A. Diaz-Cabanas M. J. Leiva S. Moliner M. Rey F. Sabater M. J. Valencia S. Structural study of pure silica and Ge-containing zeolite ITQ-24. Z. Kristallogr. 2007;26:393–398. doi: 10.1524/zksu.2007.2007.suppl_26.393. DOI
Xu H. Jiang J.-G. Yang B. Zhang L. He M. Wu P. Post-Synthesis Treatment gives Highly Stable Siliceous Zeolites through the Isomorphous Substitution of Silicon for Germanium in Germanosilicates. Angew. Chem., Int. Ed. 2014;53:1355–1359. doi: 10.1002/anie.201306527. PubMed DOI
Hong X. Chen W. Zhang G. Wu Q. Lei C. Zhu Q. Meng X. Han S. Zheng A. Ma Y. Parvulescu A.-N. Müller U. Zhang W. Yokoi T. Bao X. Marler B. De Vos D. E. Kolb U. Xiao F.-S. Direct Synthesis of Aluminosilicate IWR Zeolite from a Strong Interaction between Zeolite Framework and Organic Template. J. Am. Chem. Soc. 2019;141:18318–18324. doi: 10.1021/jacs.9b09903. PubMed DOI
Kemp K. C. Seo S. Ahn S. H. Hong S. B. Direct Synthesis of Ge-free IWR-type Zeolites. Chem. Lett. 2019;48:1445–1447. doi: 10.1246/cl.190655. DOI
Cantín A. Corma A. Diaz-Cabanas M. J. Jordá J. L. Moliner M. Rational Design and HT Techniques Allow the Synthesis of New IWR Zeolite Polymorphs. J. Am. Chem. Soc. 2006;128:4216–4217. doi: 10.1021/ja0603599. PubMed DOI
Kasneryk V. Shamzhy M. Opanasenko M. Wheatley P. S. Morris R. E. Čejka J. Insight into the ADOR zeolite-to-zeolite transformation: the UOV case. Dalton Trans. 2018;47:3084–3092. doi: 10.1039/C7DT03751A. PubMed DOI
Chlubná-Eliášová P. Tian Y. Pinar A. B. Kubů M. Čejka J. Morris R. E. The Assembly-Disassembly-Organization-Reassembly Mechanism for 3D-2D-3D Transformation of Germanosilicate IWW Zeolite. Angew. Chem., Int. Ed. 2014;53:7048–7052. doi: 10.1002/anie.201400600. PubMed DOI PMC
Trachta M. Volný T. Bulánek R. Koudelková E. Halamek J. Rubeš M. Shamzhy M. Mazur M. Čejka J. Bludský O. Strong CO2 adsorption in narrow-pore ADOR zeolites: A combined experimental and computational study on IPC-12 and related structures. J. CO2 Util. 2023;74:102548. doi: 10.1016/j.jcou.2023.102548. DOI
Heard C. J. Čejka J. Opanasenko M. Nachtigall P. Centi G. Perathoner S. 2D Oxide Nanomaterials to Address the Energy Transition and Catalysis. Adv. Mater. 2019;31:1801712. doi: 10.1002/adma.201801712. PubMed DOI
Heard C. J. Grajciar L. Uhlík F. Shamzhy M. Opanasenko M. Čejka J. Nachtigall P. Zeolite (In)Stability under Aqueous or Steaming Conditions. Adv. Mater. 2020;32:2003264. doi: 10.1002/adma.202003264. PubMed DOI
Zhang L. Chen K. Chen B. White J. L. Resasco D. E. Factors that Determine Zeolite Stability in Hot Liquid Water. J. Am. Chem. Soc. 2015;137:11810–11819. doi: 10.1021/jacs.5b07398. PubMed DOI
Zhang L. Chen Y. Jiang J.-G. Xu L. Guo W. Xu H. Wen X.-D. Wu P. Facile synthesis of ECNU-20 (IWR) hollow sphere zeolite composed of aggregated nanosheets. Dalton Trans. 2017;46:15641–15645. doi: 10.1039/C7DT03420B. PubMed DOI
Henkelis S. E. Mazur M. Rice C. M. Bignami G. P. M. Wheatley P. S. Ashbrook S. E. Čejka J. Morris R. E. A procedure for identifying possible products in the assembly-disassembly-organization-reassembly (ADOR) synthesis of zeolites. Nat. Protoc. 2019;14:781–794. doi: 10.1038/s41596-018-0114-6. PubMed DOI
O’Keeffe M. Yaghi O. M. Germanate Zeolites: Contrasting the Behavior of Germanate and Silicate Structures Built from Cubic T8O20 Units (T=Ge or Si) Chem.–Eur. J. 1999;5:2796–2801. doi: 10.1002/(SICI)1521-3765(19991001)5:10<2796::AID-CHEM2796>3.0.CO;2-6. DOI
Corma A. Díaz-Cabañas M. J. Martínez-Triguero J. Rey F. Rius J. A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst. Nature. 2002;418:514–517. doi: 10.1038/nature00924. PubMed DOI
Corma A. Puche M. Rey F. Sankar G. Teat S. J. A Zeolite Structure (ITQ-13) with Three Sets of Medium-Pore Crossing Channels Formed by 9- and 10-Rings. Angew. Chem., Int. Ed. 2003;42:1156–1159. doi: 10.1002/anie.200390304. PubMed DOI
Yang X. Camblor M. A. Lee Y. Liu H. Olson D. H. Synthesis and Crystal Structure of As-Synthesized and Calcined Pure Silica Zeolite ITQ-12. J. Am. Chem. Soc. 2004;126:10403–10409. doi: 10.1021/ja0481474. PubMed DOI
Trachta M. Bludský O. Čejka J. Morris R. E. Nachtigall P. From Double-Four-Ring Germanosilicates to New Zeolites: In Silico Investigation. ChemPhysChem. 2014;15:2972–2976. doi: 10.1002/cphc.201402358. PubMed DOI
Potts D. S. Komar J. K. Locht H. Flaherty D. W. Understanding Rates and Regioselectivities for Epoxide Methanolysis within Zeolites: Mechanism and Roles of Covalent and Non-covalent Interactions. ACS Catal. 2023;13:14928–14944. doi: 10.1021/acscatal.3c04103. DOI
Deshpande N. Parulkar A. Joshi R. Diep B. Kulkarni A. Brunelli N. A. Epoxide ring opening with alcohols using heterogeneous Lewis acid catalysts: Regioselectivity and mechanism. J. Catal. 2019;370:46–54. doi: 10.1016/j.jcat.2018.11.038. DOI
Zhang J. Yue Q. Mazur M. Opanasenko M. Shamzhy M. V. Čejka J. Selective Recovery and Recycling of Germanium for the Design of Sustainable Zeolite Catalysts. ACS Sustainable Chem. Eng. 2020;8:8235–8246. doi: 10.1021/acssuschemeng.0c01336. DOI
Sastre G. Pulido A. Castañeda R. Corma A. Effect of the Germanium Incorporation in the Synthesis of EU-1, ITQ-13, ITQ-22, and ITQ-24 Zeolites. J. Phys. Chem. B. 2004;108:8830–8835. doi: 10.1021/jp0378438. DOI