ADOR zeolite with 12 × 8 × 8-ring pores derived from IWR germanosilicate

. 2024 Jan 03 ; 12 (2) : 802-812. [epub] 20231129

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38178865

Zeolites have been well known for decades as catalytic materials and adsorbents and are traditionally prepared using the bottom-up synthesis method. Although it was productive for more than 250 zeolite frameworks, the conventional solvothermal synthesis approach provided limited control over the structural characteristics of the formed materials. In turn, the discovery and development of the Assembly-Disassembly-Organization-Reassembly (ADOR) strategy for the regioselective manipulation of germanosilicates enabled the synthesis of previously unattainable zeolites with predefined structures. To date, the family tree of ADOR materials has included the topological branches of UTL, UOV, IWW, *CTH, and IWV zeolites. Herein, we report on the expansion of ADOR zeolites with a new branch related to the IWR topology, which is yet unattainable experimentally but theoretically predicted as highly promising adsorbents for CO2 separation applications. The optimization of not only the chemical composition but also the dimensions of the crystalline domain in the parent IWR zeolite in the Assembly step was found to be the key to the success of its ADOR transformation into previously unknown IPC-17 zeolite with an intersecting 12 × 8 × 8-ring pore system. The structure of the as-prepared IPC-17 zeolite was verified by a combination of microscopic and diffraction techniques, while the results on the epichlorohydrin ring-opening with alcohols of variable sizes proved the molecular sieving ability of IPC-17 with potential application in heterogeneous catalysis. The proposed synthesis strategy may facilitate the discovery of zeolite materials that are difficult or yet impossible to achieve using a traditional bottom-up synthesis approach.

Zobrazit více v PubMed

Li Y. Li L. Yu J. H. Applications of Zeolites in Sustainable Chemistry. Chem. 2017;3:928–949.

Grand J. Awala H. Mintova S. Mechanism of zeolites crystal growth: new findings and open questions. CrystEngComm. 2016;18:650–664. doi: 10.1039/C5CE02286J. DOI

Opanasenko M. Shamzhy M. Wang Y. Yan W. Nachtigall P. Čejka J. Synthesis and Post-Synthesis Transformation of Germanosilicate Zeolites. Angew. Chem., Int. Ed. 2020;59:19380–19389. doi: 10.1002/anie.202005776. PubMed DOI

Roth W. J. Nachtigall P. Morris R. E. Wheatley P. S. Seymour V. R. Ashbrook S. E. Chlubná P. Grajciar L. Položij M. Zukal A. Shvets O. Čejka J. A family of zeolites with controlled pore size prepared using a top-down method. Nat. Chem. 2013;5:628–633. doi: 10.1038/nchem.1662. PubMed DOI

Trachta M. Nachtigall P. Bludský O. The ADOR synthesis of new zeolites: In silico investigation. Catal. Today. 2015;243:32–38. doi: 10.1016/j.cattod.2014.07.041. DOI

Eliášová P. Opanasenko M. Wheatley P. S. Shamzhy M. Mazur M. Nachtigall P. Roth W. J. Morris R. E. Čejka J. The ADOR mechanism for the synthesis of new zeolites. Chem. Soc. Rev. 2015;44:7177–7206. doi: 10.1039/C5CS00045A. PubMed DOI

Mazur M. Wheatley P. S. Navarro M. Roth W. J. Položij M. Mayoral A. Eliášová P. Nachtigall P. Čejka J. Morris R. E. Synthesis of ‘unfeasible’ zeolites. Nat. Chem. 2016;8:58–62. doi: 10.1038/nchem.2374. PubMed DOI

Zhou Y. Kadam S. A. Shamzhy M. Čejka J. Opanasenko M. Isoreticular UTL-Derived Zeolites as Model Materials for Probing Pore Size–Activity Relationship. ACS Catal. 2019;9:5136–5146. doi: 10.1021/acscatal.9b00950. DOI

Kasneryk V. Shamzhy M. Opanasenko M. Wheatley P. S. Morris S. A. Russell S. E. Mayoral A. Trachta M. Čejka J. Morris R. E. Expansion of the ADOR Strategy for the Synthesis of Zeolites: The Synthesis of IPC-12 from Zeolite UOV. Angew. Chem., Int. Ed. 2017;56:4324–4327. doi: 10.1002/anie.201700590. PubMed DOI PMC

Firth D. S. Morris S. A. Wheatley P. S. Russell S. E. Slawin A. M. Z. Dawson D. M. Mayoral A. Opanasenko M. Položij M. Čejka J. Nachtigall P. Morris R. E. Assembly–Disassembly–Organization–Reassembly Synthesis of Zeolites Based on cfi-Type Layers. Chem. Mater. 2017;29:5605–5611. doi: 10.1021/acs.chemmater.7b01181. DOI

Liu X. Mao W. Jiang J. Lu X. Peng M. Xu H. Han L. Che S.-A. Wu P. Topotactic Conversion of Alkali-Treated Intergrown Germanosilicate CIT-13 into Single-Crystalline ECNU-21 Zeolite as Shape-Selective Catalyst for Ethylene Oxide Hydration. Chem.–Eur. J. 2019;25:4520–4529. doi: 10.1002/chem.201900173. PubMed DOI

Kasneryk V. Shamzhy M. Zhou J. Yue Q. Mazur M. Mayoral A. Luo Z. Morris R. E. Čejka J. Opanasenko M. Vapour-phase-transport rearrangement technique for the synthesis of new zeolites. Nat. Commun. 2019;10:5129. doi: 10.1038/s41467-019-12882-3. PubMed DOI PMC

Lu K. Huang J. Jiao M. Zhao Y. Ma Y. Jiang J. Xu H. Ma Y. Wu P. Topotactic conversion of Ge-rich IWW zeolite into IPC-18 under mild condition. Microporous Mesoporous Mater. 2021;310:110617. doi: 10.1016/j.micromeso.2020.110617. DOI

Yue Q. Steciuk G. Mazur M. Zhang J. Petrov O. Shamzhy M. Liu M. Palatinus L. Čejka J. Opanasenko M. Catching a New Zeolite as a Transition Material during Deconstruction. J. Am. Chem. Soc. 2023;145:9081–9091. doi: 10.1021/jacs.3c00423. PubMed DOI PMC

Shamzhy M. Opanasenko M. Tian Y. Konysheva K. Shvets O. Morris R. E. Čejka J. Germanosilicate Precursors of ADORable Zeolites Obtained by Disassembly of ITH, ITR, and IWR Zeolites. Chem. Mater. 2014;26:5789–5798. doi: 10.1021/cm502953s. DOI

Castañeda R. Corma A. Fornés V. Rey F. Rius J. Synthesis of a New Zeolite Structure ITQ-24, with Intersecting 10- and 12-Membered Ring Pores. J. Am. Chem. Soc. 2003;125:7820–7821. doi: 10.1021/ja035534p. PubMed DOI

Pinar A. B. McCusker L. B. Baerlocher C. Schmidt J. Hwang S. J. Davis M. E. Zones S. I. Location of Ge and extra-framework species in the zeolite ITQ-24. Dalton Trans. 2015;44:6288–6295. doi: 10.1039/C4DT03831B. PubMed DOI

Jorda J. L. Cantin A. Corma A. Diaz-Cabanas M. J. Leiva S. Moliner M. Rey F. Sabater M. J. Valencia S. Structural study of pure silica and Ge-containing zeolite ITQ-24. Z. Kristallogr. 2007;26:393–398. doi: 10.1524/zksu.2007.2007.suppl_26.393. DOI

Xu H. Jiang J.-G. Yang B. Zhang L. He M. Wu P. Post-Synthesis Treatment gives Highly Stable Siliceous Zeolites through the Isomorphous Substitution of Silicon for Germanium in Germanosilicates. Angew. Chem., Int. Ed. 2014;53:1355–1359. doi: 10.1002/anie.201306527. PubMed DOI

Hong X. Chen W. Zhang G. Wu Q. Lei C. Zhu Q. Meng X. Han S. Zheng A. Ma Y. Parvulescu A.-N. Müller U. Zhang W. Yokoi T. Bao X. Marler B. De Vos D. E. Kolb U. Xiao F.-S. Direct Synthesis of Aluminosilicate IWR Zeolite from a Strong Interaction between Zeolite Framework and Organic Template. J. Am. Chem. Soc. 2019;141:18318–18324. doi: 10.1021/jacs.9b09903. PubMed DOI

Kemp K. C. Seo S. Ahn S. H. Hong S. B. Direct Synthesis of Ge-free IWR-type Zeolites. Chem. Lett. 2019;48:1445–1447. doi: 10.1246/cl.190655. DOI

Cantín A. Corma A. Diaz-Cabanas M. J. Jordá J. L. Moliner M. Rational Design and HT Techniques Allow the Synthesis of New IWR Zeolite Polymorphs. J. Am. Chem. Soc. 2006;128:4216–4217. doi: 10.1021/ja0603599. PubMed DOI

Kasneryk V. Shamzhy M. Opanasenko M. Wheatley P. S. Morris R. E. Čejka J. Insight into the ADOR zeolite-to-zeolite transformation: the UOV case. Dalton Trans. 2018;47:3084–3092. doi: 10.1039/C7DT03751A. PubMed DOI

Chlubná-Eliášová P. Tian Y. Pinar A. B. Kubů M. Čejka J. Morris R. E. The Assembly-Disassembly-Organization-Reassembly Mechanism for 3D-2D-3D Transformation of Germanosilicate IWW Zeolite. Angew. Chem., Int. Ed. 2014;53:7048–7052. doi: 10.1002/anie.201400600. PubMed DOI PMC

Trachta M. Volný T. Bulánek R. Koudelková E. Halamek J. Rubeš M. Shamzhy M. Mazur M. Čejka J. Bludský O. Strong CO2 adsorption in narrow-pore ADOR zeolites: A combined experimental and computational study on IPC-12 and related structures. J. CO2 Util. 2023;74:102548. doi: 10.1016/j.jcou.2023.102548. DOI

Heard C. J. Čejka J. Opanasenko M. Nachtigall P. Centi G. Perathoner S. 2D Oxide Nanomaterials to Address the Energy Transition and Catalysis. Adv. Mater. 2019;31:1801712. doi: 10.1002/adma.201801712. PubMed DOI

Heard C. J. Grajciar L. Uhlík F. Shamzhy M. Opanasenko M. Čejka J. Nachtigall P. Zeolite (In)Stability under Aqueous or Steaming Conditions. Adv. Mater. 2020;32:2003264. doi: 10.1002/adma.202003264. PubMed DOI

Zhang L. Chen K. Chen B. White J. L. Resasco D. E. Factors that Determine Zeolite Stability in Hot Liquid Water. J. Am. Chem. Soc. 2015;137:11810–11819. doi: 10.1021/jacs.5b07398. PubMed DOI

Zhang L. Chen Y. Jiang J.-G. Xu L. Guo W. Xu H. Wen X.-D. Wu P. Facile synthesis of ECNU-20 (IWR) hollow sphere zeolite composed of aggregated nanosheets. Dalton Trans. 2017;46:15641–15645. doi: 10.1039/C7DT03420B. PubMed DOI

Henkelis S. E. Mazur M. Rice C. M. Bignami G. P. M. Wheatley P. S. Ashbrook S. E. Čejka J. Morris R. E. A procedure for identifying possible products in the assembly-disassembly-organization-reassembly (ADOR) synthesis of zeolites. Nat. Protoc. 2019;14:781–794. doi: 10.1038/s41596-018-0114-6. PubMed DOI

O’Keeffe M. Yaghi O. M. Germanate Zeolites: Contrasting the Behavior of Germanate and Silicate Structures Built from Cubic T8O20 Units (T=Ge or Si) Chem.–Eur. J. 1999;5:2796–2801. doi: 10.1002/(SICI)1521-3765(19991001)5:10<2796::AID-CHEM2796>3.0.CO;2-6. DOI

Corma A. Díaz-Cabañas M. J. Martínez-Triguero J. Rey F. Rius J. A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst. Nature. 2002;418:514–517. doi: 10.1038/nature00924. PubMed DOI

Corma A. Puche M. Rey F. Sankar G. Teat S. J. A Zeolite Structure (ITQ-13) with Three Sets of Medium-Pore Crossing Channels Formed by 9- and 10-Rings. Angew. Chem., Int. Ed. 2003;42:1156–1159. doi: 10.1002/anie.200390304. PubMed DOI

Yang X. Camblor M. A. Lee Y. Liu H. Olson D. H. Synthesis and Crystal Structure of As-Synthesized and Calcined Pure Silica Zeolite ITQ-12. J. Am. Chem. Soc. 2004;126:10403–10409. doi: 10.1021/ja0481474. PubMed DOI

Trachta M. Bludský O. Čejka J. Morris R. E. Nachtigall P. From Double-Four-Ring Germanosilicates to New Zeolites: In Silico Investigation. ChemPhysChem. 2014;15:2972–2976. doi: 10.1002/cphc.201402358. PubMed DOI

Potts D. S. Komar J. K. Locht H. Flaherty D. W. Understanding Rates and Regioselectivities for Epoxide Methanolysis within Zeolites: Mechanism and Roles of Covalent and Non-covalent Interactions. ACS Catal. 2023;13:14928–14944. doi: 10.1021/acscatal.3c04103. DOI

Deshpande N. Parulkar A. Joshi R. Diep B. Kulkarni A. Brunelli N. A. Epoxide ring opening with alcohols using heterogeneous Lewis acid catalysts: Regioselectivity and mechanism. J. Catal. 2019;370:46–54. doi: 10.1016/j.jcat.2018.11.038. DOI

Zhang J. Yue Q. Mazur M. Opanasenko M. Shamzhy M. V. Čejka J. Selective Recovery and Recycling of Germanium for the Design of Sustainable Zeolite Catalysts. ACS Sustainable Chem. Eng. 2020;8:8235–8246. doi: 10.1021/acssuschemeng.0c01336. DOI

Sastre G. Pulido A. Castañeda R. Corma A. Effect of the Germanium Incorporation in the Synthesis of EU-1, ITQ-13, ITQ-22, and ITQ-24 Zeolites. J. Phys. Chem. B. 2004;108:8830–8835. doi: 10.1021/jp0378438. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace