Vapour-phase-transport rearrangement technique for the synthesis of new zeolites
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31719520
PubMed Central
PMC6851152
DOI
10.1038/s41467-019-12882-3
PII: 10.1038/s41467-019-12882-3
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Owing to the significant difference in the numbers of simulated and experimentally feasible zeolite structures, several alternative strategies have been developed for zeolite synthesis. Despite their rationality and originality, most of these techniques are based on trial-and-error, which makes it difficult to predict the structure of new materials. Assembly-Disassembly-Organization-Reassembly (ADOR) method overcoming this limitation was successfully applied to a limited number of structures with relatively stable crystalline layers (UTL, UOV, *CTH). Here, we report a straightforward, vapour-phase-transport strategy for the transformation of IWW zeolite with low-density silica layers connected by labile Ge-rich units into material with new topology. In situ XRD and XANES studies on the mechanism of IWW rearrangement reveal an unusual structural distortion-reconstruction of the framework throughout the process. Therefore, our findings provide a step forward towards engineering nanoporous materials and increasing the number of zeolites available for future applications.
Zobrazit více v PubMed
Weckhuysen BM, Yu J. Recent advances in zeolite chemistry and catalysis. Chem. Soc. Rev. 2015;44:7022–7024. doi: 10.1039/C5CS90100F. PubMed DOI
Přech J, Pizarro P, Serrano DP, Čejka J. From 3D to 2D zeolite catalytic materials. Chem. Soc. Rev. 2018;47:8263–8306. doi: 10.1039/C8CS00370J. PubMed DOI
Shamzhy M, Opanasenko M, Concepción P, Martínez A. New trends in tailoring active sites in zeolite-based catalysts. Chem. Soc. Rev. 2019;48:1095–1149. doi: 10.1039/C8CS00887F. PubMed DOI
Kuznetsova ED, Blatova OA, Blatov VA. Predicting new zeolites: a combination of thermodynamic and kinetic factors. Chem. Mater. 2018;30:2829–2837. doi: 10.1021/acs.chemmater.8b00905. DOI
Corma A, et al. Extra-large pore zeolite (ITQ-40) with the lowest framework density containing double four- and double three-rings. Proc. Natl Acad. Sci. USA. 2010;107:13997–14002. doi: 10.1073/pnas.1003009107. PubMed DOI PMC
Simancas R, et al. A new microporous zeolitic silicoborate (ITQ-52) with interconnected small and medium pores. J. Am. Chem. Soc. 2014;136:3342–3345. doi: 10.1021/ja411915c. PubMed DOI
Xu Y, Li Y, Han Y, Song X, Yu J. A Gallogermanate zeolite with eleven-membered-ring channels. Angew. Chem., Int Ed. 2013;52:5501–5503. doi: 10.1002/anie.201300846. PubMed DOI
Martínez-Franco R, et al. Synthesis of an extra-large molecular sieve using proton sponges as organic structure-directing agents. Proc. Natl Acad. Sci. USA. 2013;110:3749–3754. doi: 10.1073/pnas.1220733110. PubMed DOI PMC
Jordá JL, et al. Synthesis of a novel zeolite through a pressure-induced reconstructive phase transition process. Angew. Chem., Int Ed. 2013;52:10458–10462. doi: 10.1002/anie.201305230. PubMed DOI
Eliášová P, et al. The ADOR mechanism for the synthesis of new zeolites. Chem. Soc. Rev. 2015;44:7177–7206. doi: 10.1039/C5CS00045A. PubMed DOI
Mazur M, et al. Synthesis of ‘unfeasible’ zeolites. Nat. Chem. 2016;8:58–62. doi: 10.1038/nchem.2374. PubMed DOI
Kasneryk V, et al. Expansion of the ADOR strategy for the synthesis of zeolites: the synthesis of IPC-12 from zeolite UOV. Angew. Chem. Int Ed. 2017;56:4324–4327. doi: 10.1002/anie.201700590. PubMed DOI PMC
Firth DS, et al. Assembly–disassembly–organization–reassembly synthesis of zeolites based on cfi-type layers. Chem. Mater. 2017;29:5605–5611. doi: 10.1021/acs.chemmater.7b01181. DOI
Chlubná-Eliášová P, et al. The assembly-disassembly-organization-reassembly mechanism for 3D-2D-3D transformation of germanosilicate IWW zeolite. Angew. Chem. Int Ed. 2014;53:7042–7052. doi: 10.1002/anie.201400600. PubMed DOI PMC
Morris SA, et al. In situ solid-state NMR and XRD studies of the ADOR process and the unusual structure of zeolite IPC-6. Nat. Chem. 2017;9:1012–1018. doi: 10.1038/nchem.2761. PubMed DOI
Shamzhy M, et al. Germanosilicate precursors of adorable zeolites obtained by disassembly of ITH, ITR, and IWR zeolites. Chem. Mater. 2014;26:5789–5798. doi: 10.1021/cm502953s. DOI
Wheatley PS, et al. Zeolites with continuously tuneable porosity. Angew. Chem., Int Ed. 2014;53:13210–13214. doi: 10.1002/anie.201407676. PubMed DOI PMC
Fritz JJ, Fuget CR. Vapor pressure of aqueous hydrogen chloride solutions, O° to 50° C. Ind. Eng. Chem. Chem. Eng. Data. 1956;1:10–12. doi: 10.1021/i460001a002. DOI
Laubengayer AW, Tabern DL. Germanium. XIV. J. Phys. Chem. 1925;30:1047–1048. doi: 10.1021/j150266a005. DOI
Trachta M, Nachtigall P, Bludsky O. The ADOR synthesis of new zeolites: in silico investigation. Catal. Tod. 2015;243:32–38. doi: 10.1016/j.cattod.2014.07.041. DOI
Verheyen E, et al. Design of zeolite by inverse sigma transformation. Nat. Mater. 2012;11:1059–1064. doi: 10.1038/nmat3455. PubMed DOI
Corma A, Rey F, Valencia S, Jorda JL, Rius J. A zeolite with interconnected 8-, 10- and 12-ring pores and its unique catalytic selectivity. Nat. Mater. 2003;2:493–497. doi: 10.1038/nmat921. PubMed DOI
Shvets OV, Kasian N, Zukal A, Pinkas J, Čejka J. The role of template structure and synergism between inorganic and organic structure directing agents in the synthesis of UTL zeolite. Chem. Mater. 2010;22:3482–3495. doi: 10.1021/cm1006108. DOI
Lorgouilloux Y, et al. IM-17: a new zeolitic material, synthesis and structure elucidation from electron diffraction ADT data and Rietveld analysis. RSC Adv. 2014;4:19440–19449. doi: 10.1039/c4ra01383b. DOI
ADOR zeolite with 12 × 8 × 8-ring pores derived from IWR germanosilicate