Catching a New Zeolite as a Transition Material during Deconstruction

. 2023 Apr 26 ; 145 (16) : 9081-9091. [epub] 20230411

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37040083

Zeolites are key materials in both basic research and industrial applications. However, their synthesis is neither diverse nor applicable to labile frameworks because classical procedures require harsh hydrothermal conditions, whereas post-synthesis methods are limited to a few suitable parent materials. Remaining frameworks can fail due to amorphization, dissolution, and other decomposition processes. Nevertheless, stopping degradation at intermediate structures could yield new zeolites. Here, by optimizing the design and synthesis parameters of the parent zeolite IWV, we "caught" a new, highly crystalline, and siliceous zeolite during its degradation. IWV seed-assisted crystallization followed by gentle transformation into the water-alcohol system yielded the highly crystalline daughter zeolite IPC-20, whose structure was solved by precession-assisted three-dimensional electron diffraction. Without additional requirements, as in conventional (direct or post-synthesis) strategies, our approach may be applied to any chemically labile material with a staged structure.

Zobrazit více v PubMed

Li Y.; Yu J. Emerging applications of zeolites in catalysis, separation and host–guest assembly. Nat. Rev. Mater. 2021, 6, 1156–1174. 10.1038/s41578-021-00347-3. DOI

Bouchiba N.; Guzman Castillo M. L. A.; Bengueddach A.; Fajula F.; Di Renzo F. Zeolite metastability as a function of the composition of the surrounding solution: The case of faujasite and zeolite omega. Microporous Mesoporous Mater. 2011, 144, 195–199. 10.1016/j.micromeso.2011.04.015. DOI

Schwalbe-Koda D.; Kwon S.; Paris C.; Bello-Jurado E.; Jensen Z.; Olivetti E.; Willhammar T.; Corma A.; Roman-Leshkov Y.; Moliner M.; Gomez-Bombarelli R. A priori control of zeolite phase competition and intergrowth with high-throughput simulations. Science 2021, 374, 308–315. 10.1126/science.abh3350. PubMed DOI

Dwyer F. G.; Chu P. ZSM-4 crystallization via faujasite metamorphosis. J. Catal. 1979, 59, 263–271. 10.1016/s0021-9517(79)80030-5. DOI

Xu H.; Wu P. New progress in zeolite synthesis and catalysis. Natl. Sci. Rev. 2022, 9, nwac045.10.1093/nsr/nwac045. PubMed DOI PMC

Ma S.; Shang C.; Wang C.-M.; Liu Z. P. Thermodynamic rules for zeolite formation from machine learning based global optimization. Chem. Sci. 2020, 11, 10113–10118. 10.1039/d0sc03918g. PubMed DOI PMC

Maldonado M.; Oleksiak M. D.; Chinta S.; Rimer J. D. Controlling crystal polymorphism in organic-free synthesis of Na-zeolites. J. Am. Chem. Soc. 2013, 135, 2641–2652. 10.1021/ja3105939. PubMed DOI

Zwijnenburg M. A.; Bell R. G. Absence of limitations on the framework density and pore size of high-silica zeolites. Chem. Mater. 2008, 20, 3008–3014. 10.1021/cm702175q. DOI

Auerbach S. M.; Carrado K. A.; Dutta P. K., Handbook of Zeolite Science and Technology. 1st ed.; CRC Press: 2003.

Jain R.; Mallette A. J.; Rimer J. D. Controlling nucleation pathways in zeolite crystallization: Seeding conceptual methodologies for advanced materials design. J. Am. Chem. Soc. 2021, 143, 21446–21460. 10.1021/jacs.1c11014. PubMed DOI

Van Santen R. A. The Ostwald step rule. J. Phys. Chem. 1984, 88, 5768–5769. 10.1021/j150668a002. DOI

Opanasenko M.; Shamzhy M.; Wang Y.; Yan W.; Nachtigall P.; Čejka J. Synthesis and post-synthesis transformation of germanosilicate zeolites. Angew. Chem., Int. Ed. 2020, 59, 19380–19389. 10.1002/anie.202005776. PubMed DOI

Eliášová P.; Opanasenko M.; Wheatley P. S.; Shamzhy M.; Mazur M.; Nachtigall P.; Roth W. J.; Morris R. E.; Čejka J. The ADOR mechanism for the synthesis of new zeolites. Chem. Soc. Rev. 2015, 44, 7177–7206. 10.1039/c5cs00045a. PubMed DOI

Mazur M.; Wheatley P. S.; Navarro M.; Roth W. J.; Položij M.; Mayoral A.; Eliášová P.; Nachtigall P.; Čejka J.; Morris R. E. Synthesis of ‘unfeasible’ zeolites. Nat. Chem. 2016, 8, 58–62. 10.1038/nchem.2374. PubMed DOI

O’Keeffe M.; Yaghi O. M. Germanate zeolites: Contrasting the behavior of germanate and silicate structures built from cubic T8O20 Units (T=Ge or Si). Chem. Eur. J. 1999, 5, 2796–2801. 10.1002/(sici)1521-3765(19991001)5:10<2796::aid-chem2796>3.0.co;2-6. DOI

Shamzhy M.; Opanasenko M.; Tian Y.; Konysheva K.; Shvets O.; Morris R. E.; Čejka J. Germanosilicate precursors of adorable zeolites obtained by disassembly of ITH, ITR, and IWR zeolites. Chem. Mater. 2014, 26, 5789–5798. 10.1021/cm502953s. DOI

Dorset D. L.; Kennedy G. J.; Strohmaier K. G.; Diaz-Cabañas M. J.; Rey F.; Corma A. P-derived organic cations as structure-directing agents: Synthesis of a high-silica zeolite (ITQ-27) with a two-dimensional 12-ring channel system. J. Am. Chem. Soc. 2006, 128, 8862–8867. 10.1021/ja061206o. PubMed DOI

Schmidt J. E.; Chen C.-Y.; Brand S. K.; Zones S. I.; Davis M. E. Facile synthesis, characterization, and catalytic behavior of a large-pore zeolite with the IWV framework. Chem. Eur. J. 2016, 22, 4022–4029. 10.1002/chem.201504717. PubMed DOI

Jiao M.; Zhao Y.; Jiang J.; Yin J. P.; Peng R.; Lu K.; Xu H.; Wu P. Extra-large pore titanosilicate synthesized via reversible 3D-2D-3D structural transformation as highly active catalyst for cycloalkene epoxidation. Acs Catal 2021, 11, 2650–2662. 10.1021/acscatal.0c05144. DOI

Heard C. J.; Grajciar L.; Uhlik F.; Shamzhy M.; Opanasenko M.; Čejka J.; Nachtigall P. Zeolite (in)stability under aqueous or steaming conditions. Adv. Mater. 2020, 32, e200326410.1002/adma.202003264. PubMed DOI

Yue Q.; Zhang J.; Shamzhy M.; Opanasenko M. Seeded growth of isomorphously substituted chabazites in proton-form. Microporous Mesoporous Mater. 2019, 280, 331–336. 10.1016/j.micromeso.2019.02.017. DOI

Vidal-Moya J. A.; Blasco T.; Rey F.; Corma A.; Puche M. Distribution of fluorine and germanium in a new zeolite structure ITQ-13 studied by 19F nuclear magnetic resonance. Chem. Mater. 2003, 15, 3961–3963. 10.1021/cm034515b. DOI

Blasco T.; Corma A.; Díaz-Cabañas M. J.; Rey F.; Vidal-Moya J. A.; Zicovich-Wilson C. M. Preferential location of ge in the double four-membered ring units of ITQ-7 zeolite. J. Phys. Chem. B 2002, 106, 2634–2642. 10.1021/jp013302b. DOI

Pulido A.; Sastre G.; Corma A. Computational study of 19F NMR spectra of double four ring-containing Si/Ge-zeolites. ChemPhysChem 2006, 7, 1092–1099. 10.1002/cphc.200500634. PubMed DOI

Rigo R. T.; Balestra S. R. G.; Hamad S.; Bueno-Perez R.; Ruiz-Salvador A. R.; Calero S.; Camblor M. A. The Si–Ge substitutional series in the chiral STW zeolite structure type. J. Mater. Chem. A 2018, 6, 15110–15122. 10.1039/c8ta03879a. DOI

Kasneryk V.; Shamzhy M.; Opanasenko M.; Wheatley P. S.; Morris R. E.; Čejka J. Insight into the ADOR zeolite-to-zeolite transformation: the UOV case. Dalton Trans. 2018, 47, 3084–3092. 10.1039/c7dt03751a. PubMed DOI

Henkelis S. E.; Mazur M.; Rice C. M.; Wheatley P. S.; Ashbrook S. E.; Morris R. E. Kinetics and mechanism of the hydrolysis and rearrangement processes within the assembly-disassembly-organization-reassembly synthesis of zeolites. J. Am. Chem. Soc. 2019, 141, 4453–4459. 10.1021/jacs.9b00643. PubMed DOI PMC

Henkelis S. E.; Mazur M.; Rice C. M.; Bignami G. P. M.; Wheatley P. S.; Ashbrook S. E.; Čejka J.; Morris R. E. A procedure for identifying possible products in the assembly–disassembly–organization–reassembly (ADOR) synthesis of zeolites. Nat. Protoc. 2019, 14, 781–794. 10.1038/s41596-018-0114-6. PubMed DOI

Zhang J.; Veselý O.; Tošner Z.; Mazur M.; Opanasenko M.; Čejka J.; Shamzhy M. Toward controlling disassembly step within the ADOR process for the synthesis of zeolites. Chem. Mater. 2021, 33, 1228–1237. 10.1021/acs.chemmater.0c03993. DOI

Zhang J.; Yue Q.; Mazur M.; Opanasenko M.; Shamzhy M. V.; Čejka J. Selective recovery and recycling of germanium for the design of sustainable zeolite catalysts. ACS Sustainable Chem. Eng. 2020, 8, 8235–8246. 10.1021/acssuschemeng.0c01336. DOI

Gemmi M.; Lanza A. E. 3D electron diffraction techniques. Acta Cryst 2019, 75, 495–504. 10.1107/s2052520619007510. PubMed DOI

Gemmi M.; Mugnaioli E.; Gorelik T. E.; Kolb U.; Palatinus L.; Boullay P.; Hovmöller S.; Abrahams J. P. 3D electron diffraction: The nanocrystallography revolution. ACS Cent. Sci. 2019, 5, 1315–1329. 10.1021/acscentsci.9b00394. PubMed DOI PMC

Liu X.; Luo Y.; Mao W.; Jiang J.; Xu H.; Han L.; Sun J.; Wu P. 3D electron diffraction unravels the new zeolite ECNU-23 from the “pure” powder sample of ECNU-21. Angew. Chem., Int. Ed. 2020, 132, 1182–1186. 10.1002/ange.201912488. PubMed DOI

Burla M. C.; Caliandro R.; Carrozzini B.; Cascarano G. L.; Cuocci C.; Giacovazzo C.; Mallamo M.; Mazzone A.; Polidori G. Crystal structure determination and refinement via SIR2014. J. Appl. Cryst. 2015, 48, 306–309. 10.1107/s1600576715001132. DOI

Baerlocher C.; McCusker L. B.. Database of Zeolite Structures.2023, (accessed 23 March, 2023) http://www.iza-structure.org/databases/.

Xu H.; Jiang J.-G.; Yang B.; Zhang L.; He M.; Wu P. Post-synthesis treatment gives highly stable siliceous zeolites through the isomorphous substitution of silicon for germanium in germanosilicates. Angew. Chem., Int. Ed. 2014, 53, 1355–1359. 10.1002/anie.201306527. PubMed DOI

Wang Y.; Song J.; Gies H. The substitution of germanium for silicon in AST-type zeolite. Solid State Sci. 2003, 5, 1421–1433. 10.1016/j.solidstatesciences.2003.09.003. DOI

van Meerten S. G. J.; Franssen W. M. J.; Kentgens A. P. M. ssNake: A cross-platform open-source NMR data processing and fitting application. J. Magn. Reson. 2019, 301, 56–66. 10.1016/j.jmr.2019.02.006. PubMed DOI

Vincent R.; Midgley P. A. Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy 1994, 53, 271–282. 10.1016/0304-3991(94)90039-6. DOI

Plana-Ruiz S.; Krysiak Y.; Portillo J.; Alig E.; Estradé S.; Peiró F.; Kolb U. Fast-ADT: A fast and automated electron diffraction tomography setup for structure determination and refinement. Ultramicroscopy 2020, 211, 112951.10.1016/j.ultramic.2020.112951. PubMed DOI

Palatinus L.; Brazda P.; Jelinek M.; Hrda J.; Steciuk G.; Klementova M. Specifics of the data processing of precession electron diffraction tomography data and their implementation in the program PETS2.0. Acta Cryst 2019, 75, 512–522. 10.1107/s2052520619007534. PubMed DOI

Palatinus L.; Correa C. A.; Steciuk G.; Jacob D.; Roussel P.; Boullay P.; Klementova M.; Gemmi M.; Kopecek J.; Domeneghetti M. C.; Camara F.; Petricek V. Structure refinement using precession electron diffraction tomography and dynamical diffraction: tests on experimental data. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2015, 71, 740–751. 10.1107/s2052520615017023. PubMed DOI

Dušek M.; Petříček V. Jana2020, a new version of the crystallographic computing system. Mater. Struct. Chem., Biol., Phys. Technol. 2020, 27, 85–86.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

ADOR zeolite with 12 × 8 × 8-ring pores derived from IWR germanosilicate

. 2024 Jan 03 ; 12 (2) : 802-812. [epub] 20231129

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...