Catching a New Zeolite as a Transition Material during Deconstruction
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37040083
PubMed Central
PMC10141410
DOI
10.1021/jacs.3c00423
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Zeolites are key materials in both basic research and industrial applications. However, their synthesis is neither diverse nor applicable to labile frameworks because classical procedures require harsh hydrothermal conditions, whereas post-synthesis methods are limited to a few suitable parent materials. Remaining frameworks can fail due to amorphization, dissolution, and other decomposition processes. Nevertheless, stopping degradation at intermediate structures could yield new zeolites. Here, by optimizing the design and synthesis parameters of the parent zeolite IWV, we "caught" a new, highly crystalline, and siliceous zeolite during its degradation. IWV seed-assisted crystallization followed by gentle transformation into the water-alcohol system yielded the highly crystalline daughter zeolite IPC-20, whose structure was solved by precession-assisted three-dimensional electron diffraction. Without additional requirements, as in conventional (direct or post-synthesis) strategies, our approach may be applied to any chemically labile material with a staged structure.
Zobrazit více v PubMed
Li Y.; Yu J. Emerging applications of zeolites in catalysis, separation and host–guest assembly. Nat. Rev. Mater. 2021, 6, 1156–1174. 10.1038/s41578-021-00347-3. DOI
Bouchiba N.; Guzman Castillo M. L. A.; Bengueddach A.; Fajula F.; Di Renzo F. Zeolite metastability as a function of the composition of the surrounding solution: The case of faujasite and zeolite omega. Microporous Mesoporous Mater. 2011, 144, 195–199. 10.1016/j.micromeso.2011.04.015. DOI
Schwalbe-Koda D.; Kwon S.; Paris C.; Bello-Jurado E.; Jensen Z.; Olivetti E.; Willhammar T.; Corma A.; Roman-Leshkov Y.; Moliner M.; Gomez-Bombarelli R. A priori control of zeolite phase competition and intergrowth with high-throughput simulations. Science 2021, 374, 308–315. 10.1126/science.abh3350. PubMed DOI
Dwyer F. G.; Chu P. ZSM-4 crystallization via faujasite metamorphosis. J. Catal. 1979, 59, 263–271. 10.1016/s0021-9517(79)80030-5. DOI
Xu H.; Wu P. New progress in zeolite synthesis and catalysis. Natl. Sci. Rev. 2022, 9, nwac045.10.1093/nsr/nwac045. PubMed DOI PMC
Ma S.; Shang C.; Wang C.-M.; Liu Z. P. Thermodynamic rules for zeolite formation from machine learning based global optimization. Chem. Sci. 2020, 11, 10113–10118. 10.1039/d0sc03918g. PubMed DOI PMC
Maldonado M.; Oleksiak M. D.; Chinta S.; Rimer J. D. Controlling crystal polymorphism in organic-free synthesis of Na-zeolites. J. Am. Chem. Soc. 2013, 135, 2641–2652. 10.1021/ja3105939. PubMed DOI
Zwijnenburg M. A.; Bell R. G. Absence of limitations on the framework density and pore size of high-silica zeolites. Chem. Mater. 2008, 20, 3008–3014. 10.1021/cm702175q. DOI
Auerbach S. M.; Carrado K. A.; Dutta P. K., Handbook of Zeolite Science and Technology. 1st ed.; CRC Press: 2003.
Jain R.; Mallette A. J.; Rimer J. D. Controlling nucleation pathways in zeolite crystallization: Seeding conceptual methodologies for advanced materials design. J. Am. Chem. Soc. 2021, 143, 21446–21460. 10.1021/jacs.1c11014. PubMed DOI
Van Santen R. A. The Ostwald step rule. J. Phys. Chem. 1984, 88, 5768–5769. 10.1021/j150668a002. DOI
Opanasenko M.; Shamzhy M.; Wang Y.; Yan W.; Nachtigall P.; Čejka J. Synthesis and post-synthesis transformation of germanosilicate zeolites. Angew. Chem., Int. Ed. 2020, 59, 19380–19389. 10.1002/anie.202005776. PubMed DOI
Eliášová P.; Opanasenko M.; Wheatley P. S.; Shamzhy M.; Mazur M.; Nachtigall P.; Roth W. J.; Morris R. E.; Čejka J. The ADOR mechanism for the synthesis of new zeolites. Chem. Soc. Rev. 2015, 44, 7177–7206. 10.1039/c5cs00045a. PubMed DOI
Mazur M.; Wheatley P. S.; Navarro M.; Roth W. J.; Položij M.; Mayoral A.; Eliášová P.; Nachtigall P.; Čejka J.; Morris R. E. Synthesis of ‘unfeasible’ zeolites. Nat. Chem. 2016, 8, 58–62. 10.1038/nchem.2374. PubMed DOI
O’Keeffe M.; Yaghi O. M. Germanate zeolites: Contrasting the behavior of germanate and silicate structures built from cubic T8O20 Units (T=Ge or Si). Chem. Eur. J. 1999, 5, 2796–2801. 10.1002/(sici)1521-3765(19991001)5:10<2796::aid-chem2796>3.0.co;2-6. DOI
Shamzhy M.; Opanasenko M.; Tian Y.; Konysheva K.; Shvets O.; Morris R. E.; Čejka J. Germanosilicate precursors of adorable zeolites obtained by disassembly of ITH, ITR, and IWR zeolites. Chem. Mater. 2014, 26, 5789–5798. 10.1021/cm502953s. DOI
Dorset D. L.; Kennedy G. J.; Strohmaier K. G.; Diaz-Cabañas M. J.; Rey F.; Corma A. P-derived organic cations as structure-directing agents: Synthesis of a high-silica zeolite (ITQ-27) with a two-dimensional 12-ring channel system. J. Am. Chem. Soc. 2006, 128, 8862–8867. 10.1021/ja061206o. PubMed DOI
Schmidt J. E.; Chen C.-Y.; Brand S. K.; Zones S. I.; Davis M. E. Facile synthesis, characterization, and catalytic behavior of a large-pore zeolite with the IWV framework. Chem. Eur. J. 2016, 22, 4022–4029. 10.1002/chem.201504717. PubMed DOI
Jiao M.; Zhao Y.; Jiang J.; Yin J. P.; Peng R.; Lu K.; Xu H.; Wu P. Extra-large pore titanosilicate synthesized via reversible 3D-2D-3D structural transformation as highly active catalyst for cycloalkene epoxidation. Acs Catal 2021, 11, 2650–2662. 10.1021/acscatal.0c05144. DOI
Heard C. J.; Grajciar L.; Uhlik F.; Shamzhy M.; Opanasenko M.; Čejka J.; Nachtigall P. Zeolite (in)stability under aqueous or steaming conditions. Adv. Mater. 2020, 32, e200326410.1002/adma.202003264. PubMed DOI
Yue Q.; Zhang J.; Shamzhy M.; Opanasenko M. Seeded growth of isomorphously substituted chabazites in proton-form. Microporous Mesoporous Mater. 2019, 280, 331–336. 10.1016/j.micromeso.2019.02.017. DOI
Vidal-Moya J. A.; Blasco T.; Rey F.; Corma A.; Puche M. Distribution of fluorine and germanium in a new zeolite structure ITQ-13 studied by 19F nuclear magnetic resonance. Chem. Mater. 2003, 15, 3961–3963. 10.1021/cm034515b. DOI
Blasco T.; Corma A.; Díaz-Cabañas M. J.; Rey F.; Vidal-Moya J. A.; Zicovich-Wilson C. M. Preferential location of ge in the double four-membered ring units of ITQ-7 zeolite. J. Phys. Chem. B 2002, 106, 2634–2642. 10.1021/jp013302b. DOI
Pulido A.; Sastre G.; Corma A. Computational study of 19F NMR spectra of double four ring-containing Si/Ge-zeolites. ChemPhysChem 2006, 7, 1092–1099. 10.1002/cphc.200500634. PubMed DOI
Rigo R. T.; Balestra S. R. G.; Hamad S.; Bueno-Perez R.; Ruiz-Salvador A. R.; Calero S.; Camblor M. A. The Si–Ge substitutional series in the chiral STW zeolite structure type. J. Mater. Chem. A 2018, 6, 15110–15122. 10.1039/c8ta03879a. DOI
Kasneryk V.; Shamzhy M.; Opanasenko M.; Wheatley P. S.; Morris R. E.; Čejka J. Insight into the ADOR zeolite-to-zeolite transformation: the UOV case. Dalton Trans. 2018, 47, 3084–3092. 10.1039/c7dt03751a. PubMed DOI
Henkelis S. E.; Mazur M.; Rice C. M.; Wheatley P. S.; Ashbrook S. E.; Morris R. E. Kinetics and mechanism of the hydrolysis and rearrangement processes within the assembly-disassembly-organization-reassembly synthesis of zeolites. J. Am. Chem. Soc. 2019, 141, 4453–4459. 10.1021/jacs.9b00643. PubMed DOI PMC
Henkelis S. E.; Mazur M.; Rice C. M.; Bignami G. P. M.; Wheatley P. S.; Ashbrook S. E.; Čejka J.; Morris R. E. A procedure for identifying possible products in the assembly–disassembly–organization–reassembly (ADOR) synthesis of zeolites. Nat. Protoc. 2019, 14, 781–794. 10.1038/s41596-018-0114-6. PubMed DOI
Zhang J.; Veselý O.; Tošner Z.; Mazur M.; Opanasenko M.; Čejka J.; Shamzhy M. Toward controlling disassembly step within the ADOR process for the synthesis of zeolites. Chem. Mater. 2021, 33, 1228–1237. 10.1021/acs.chemmater.0c03993. DOI
Zhang J.; Yue Q.; Mazur M.; Opanasenko M.; Shamzhy M. V.; Čejka J. Selective recovery and recycling of germanium for the design of sustainable zeolite catalysts. ACS Sustainable Chem. Eng. 2020, 8, 8235–8246. 10.1021/acssuschemeng.0c01336. DOI
Gemmi M.; Lanza A. E. 3D electron diffraction techniques. Acta Cryst 2019, 75, 495–504. 10.1107/s2052520619007510. PubMed DOI
Gemmi M.; Mugnaioli E.; Gorelik T. E.; Kolb U.; Palatinus L.; Boullay P.; Hovmöller S.; Abrahams J. P. 3D electron diffraction: The nanocrystallography revolution. ACS Cent. Sci. 2019, 5, 1315–1329. 10.1021/acscentsci.9b00394. PubMed DOI PMC
Liu X.; Luo Y.; Mao W.; Jiang J.; Xu H.; Han L.; Sun J.; Wu P. 3D electron diffraction unravels the new zeolite ECNU-23 from the “pure” powder sample of ECNU-21. Angew. Chem., Int. Ed. 2020, 132, 1182–1186. 10.1002/ange.201912488. PubMed DOI
Burla M. C.; Caliandro R.; Carrozzini B.; Cascarano G. L.; Cuocci C.; Giacovazzo C.; Mallamo M.; Mazzone A.; Polidori G. Crystal structure determination and refinement via SIR2014. J. Appl. Cryst. 2015, 48, 306–309. 10.1107/s1600576715001132. DOI
Baerlocher C.; McCusker L. B.. Database of Zeolite Structures.2023, (accessed 23 March, 2023) http://www.iza-structure.org/databases/.
Xu H.; Jiang J.-G.; Yang B.; Zhang L.; He M.; Wu P. Post-synthesis treatment gives highly stable siliceous zeolites through the isomorphous substitution of silicon for germanium in germanosilicates. Angew. Chem., Int. Ed. 2014, 53, 1355–1359. 10.1002/anie.201306527. PubMed DOI
Wang Y.; Song J.; Gies H. The substitution of germanium for silicon in AST-type zeolite. Solid State Sci. 2003, 5, 1421–1433. 10.1016/j.solidstatesciences.2003.09.003. DOI
van Meerten S. G. J.; Franssen W. M. J.; Kentgens A. P. M. ssNake: A cross-platform open-source NMR data processing and fitting application. J. Magn. Reson. 2019, 301, 56–66. 10.1016/j.jmr.2019.02.006. PubMed DOI
Vincent R.; Midgley P. A. Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy 1994, 53, 271–282. 10.1016/0304-3991(94)90039-6. DOI
Plana-Ruiz S.; Krysiak Y.; Portillo J.; Alig E.; Estradé S.; Peiró F.; Kolb U. Fast-ADT: A fast and automated electron diffraction tomography setup for structure determination and refinement. Ultramicroscopy 2020, 211, 112951.10.1016/j.ultramic.2020.112951. PubMed DOI
Palatinus L.; Brazda P.; Jelinek M.; Hrda J.; Steciuk G.; Klementova M. Specifics of the data processing of precession electron diffraction tomography data and their implementation in the program PETS2.0. Acta Cryst 2019, 75, 512–522. 10.1107/s2052520619007534. PubMed DOI
Palatinus L.; Correa C. A.; Steciuk G.; Jacob D.; Roussel P.; Boullay P.; Klementova M.; Gemmi M.; Kopecek J.; Domeneghetti M. C.; Camara F.; Petricek V. Structure refinement using precession electron diffraction tomography and dynamical diffraction: tests on experimental data. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2015, 71, 740–751. 10.1107/s2052520615017023. PubMed DOI
Dušek M.; Petříček V. Jana2020, a new version of the crystallographic computing system. Mater. Struct. Chem., Biol., Phys. Technol. 2020, 27, 85–86.
ADOR zeolite with 12 × 8 × 8-ring pores derived from IWR germanosilicate