3D Electron Diffraction: The Nanocrystallography Revolution

. 2019 Aug 28 ; 5 (8) : 1315-1329. [epub] 20190719

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31482114

Crystallography of nanocrystalline materials has witnessed a true revolution in the past 10 years, thanks to the introduction of protocols for 3D acquisition and analysis of electron diffraction data. This method provides single-crystal data of structure solution and refinement quality, allowing the atomic structure determination of those materials that remained hitherto unknown because of their limited crystallinity. Several experimental protocols exist, which share the common idea of sampling a sequence of diffraction patterns while the crystal is tilted around a noncrystallographic axis, namely, the goniometer axis of the transmission electron microscope sample stage. This Outlook reviews most important 3D electron diffraction applications for different kinds of samples and problematics, related with both materials and life sciences. Structure refinement including dynamical scattering is also briefly discussed.

Zobrazit více v PubMed

Belsky A.; Hellenbrandt M.; Karen V. L.; Luksch P. New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. Acta Crystallogr., Sect. B: Struct. Sci. 2002, 58, 364–369. 10.1107/S0108768102006948. PubMed DOI

Downs R. T.; Hall-Wallace M. The American Mineralogist Crystal Structure Database. Am. Mineral. 2003, 88, 247–250.

Gražulis S.; Chateigner D.; Downs R. T.; Yokochi A. F. T.; Quiros M.; Lutterotti L.; Manakova E.; Butkus J.; Moeck P.; Le Bail A. Crystallography Open Database – an open-access collection of crystal structures. J. Appl. Crystallogr. 2009, 42, 726–729. 10.1107/S0021889809016690. PubMed DOI PMC

Groom C. R.; Bruno I. J.; Lightfoot M. P.; Ward S. C. The Cambridge Structural Database. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2016, 72, 171–179. 10.1107/S2052520616003954. PubMed DOI PMC

Burley S. K.; Berman H. M.; Bhikadiya C.; Bi C.; Chen L.; Di Costanzo L.; Christie C.; Dalenberg K.; Duarte J. M.; Dutta S.; Feng Z.; Ghosh S.; Goodsell D. S.; Green R. K.; Guranović V.; Guzenko D.; Hudson B. P.; Kalro T.; Liang Y.; Lowe R.; Namkoong H.; Peisach E.; Periskova I.; Prlić A.; Randle C.; Rose A.; Rose P.; Sala R.; Sekharan M.; Shao C.; Tan L.; Tao Y.-P.; Valasatava Y.; Voigt M.; Westbrook J.; Woo J.; Yang H.; Young J.; Zhuravleva M.; Zardecki C. RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Res. 2019, 47, D464–D474. 10.1093/nar/gky1004. PubMed DOI PMC

Cowley J. M.Electron diffraction techniques; Oxford University Press: New York, 1992; Vols. 1 and 2.

Dorset D. L.Structural electron crystallography; Plenum Pres: New York, 1995.

Dorset D. L.; Hauptman H. A. Direct phase determination for quasi-kinematical electron diffraction intensity data from organic microcrystals. Ultramicroscopy 1976, 1, 195–201. 10.1016/0304-3991(76)90034-6. PubMed DOI

Dorset D. L. Electron crystallography. Acta Crystallogr., Sect. B: Struct. Sci. 1996, 52, 753–769. 10.1107/S0108768196005599. PubMed DOI

Weirich T. E.; Ramlau R.; Simon A.; Hovmöller S.; Zou X. A crystal structure determined with 0.02 Å accuracy by electron microscopy. Nature 1996, 382, 144–146. 10.1038/382144a0. DOI

Weirich T. E.; Zou X.; Ramlau R.; Simon A.; Cascarano G. L.; Giacovazzo C.; Hovmöller S. Structures of nanometre-size crystals determined from selected-area electron diffraction data. Acta Crystallogr., Sect. A: Found. Crystallogr. 2000, 56, 29–35. 10.1107/S0108767399009605. PubMed DOI

Gonen T.; Cheng Y.; Sliz P.; Hiroaki Y.; Fujiyoshi Y.; Harrison S. C.; Walz T. Lipid-protein interactions in double-layered two-dimensional AQP0 crystals. Nature 2005, 438, 633–638. 10.1038/nature04321. PubMed DOI PMC

Dorset D. L.; Roth W. J.; Gilmore C. J. Electron crystallography of zeolites – the MWW family as a test of direct 3D structure determination. Acta Crystallogr., Sect. A: Found. Crystallogr. 2005, 61, 516–527. 10.1107/S0108767305024670. PubMed DOI

Gemmi M.; Zou X.; Hovmöller S.; Migliori A.; Vennström M.; Andersson Y. Structure of Ti2P solved by three-dimensional electron diffraction data collected with the precession technique and high-resolution electron microscopy. Acta Crystallogr., Sect. A: Found. Crystallogr. 2003, 59, 117–126. 10.1107/S0108767302022559. PubMed DOI

Kolb U.; Gorelik T.; Kübel C.; Otten M. T.; Hubert D. Towards automated diffraction tomography: Part I—Data acquisition. Ultramicroscopy 2007, 107, 507–513. 10.1016/j.ultramic.2006.10.007. PubMed DOI

Kolb U.; Gorelik T.; Otten M. T. Towards automated diffraction tomography. Part II—Cell parameter determination. Ultramicroscopy 2008, 108, 763–772. 10.1016/j.ultramic.2007.12.002. PubMed DOI

Mugnaioli E.; Gorelik T.; Kolb U. Ab Initio” structure solution from electron diffraction data obtained by a combination of automated diffraction tomography and precession technique. Ultramicroscopy 2009, 109, 758–765. 10.1016/j.ultramic.2009.01.011. PubMed DOI

Kolb U.; Mugnaioli E.; Gorelik T. E. Automated electron diffraction tomography – A new tool for nano crystal structure analysis. Cryst. Res. Technol. 2011, 46, 542–554. 10.1002/crat.201100036. DOI

Birkel C. S.; Mugnaioli E.; Gorelik T.; Kolb U.; Panthöfer M.; Tremel W. Solution synthesis of a new thermoelectric Zn1+xSb nanophase and its structure determination using automated electron diffraction tomography. J. Am. Chem. Soc. 2010, 132, 9881–9889. 10.1021/ja1035122. PubMed DOI

Rozhdestvenskaya I.; Mugnaioli E.; Czank M.; Depmeier W.; Kolb U.; Reinholdt A.; Weirich T. The structure of charoite, (K,Sr,Ba,Mn)15–16(Ca,Na)32[(Si70(O,OH)180)](OH,F)4.0·nH2O, solved by conventional and automated electron diffraction. Mineral. Mag. 2010, 74, 159–177. 10.1180/minmag.2010.074.1.159. DOI

Denysenko D.; Grzywa M.; Tonigold M.; Streppel B.; Krkljus I.; Hirscher M.; Mugnaioli E.; Kolb U.; Hanss J.; Volkmer D. Elucidating gating effects for hydrogen sorption in MFU-4-type triazolate-based metal–organic frameworks featuring different pore sizes. Chem. - Eur. J. 2011, 17, 1837–1848. 10.1002/chem.201001872. PubMed DOI

Jiang J.; Jorda J. L.; Yu J.; Baumes L. A.; Mugnaioli E.; Diaz-Cabanas M. J.; Kolb U.; Corma A. Synthesis and structure determination of the hierarchical meso-microporous zeolite ITQ-43. Science 2011, 333, 1131–1134. 10.1126/science.1208652. PubMed DOI

Palatinus L.; Klementová M.; Dřínek V.; Jarošova M.; Petříček V. An incommensurately modulated structure of η’-phase of Cu3+xSi determined by quantitative electron diffraction tomography. Inorg. Chem. 2011, 50, 3743–3751. 10.1021/ic200102z. PubMed DOI

Gorelik T. E.; van de Streek J.; Kilbinger A. F. M.; Brunklaus G.; Kolb U. Ab-initio crystal structure analysis and refinement approaches of oligo p-benzamides based on electron diffraction data. Acta Crystallogr., Sect. B: Struct. Sci. 2012, 68, 171–181. 10.1107/S0108768112003138. PubMed DOI

Martínez-Franco R.; Moliner M.; Yun Y.; Sun J.; Wan W.; Zou X.; Corma A. Synthesis of an extra-large molecular sieve using proton sponges as organic structure-directing agents. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 3749–3754. 10.1073/pnas.1220733110. PubMed DOI PMC

Förster C.; Gorelik T. E.; Kolb U.; Ksenofontov V.; Heinze K. Crystalline non-equilibrium phase of a cobalt(II) complex with tridentate ligands. Eur. J. Inorg. Chem. 2015, 2015, 920–924. 10.1002/ejic.201403200. DOI

Guo P.; Shin J.; Greenaway A. G.; Min J. G.; Su J.; Choi H. J.; Liu L.; Cox P. A.; Hong S. B.; Wright P. A.; Zou X. A Zeolite Family with expanding structural complexity and embedded isoreticular structures. Nature 2015, 524, 74–78. 10.1038/nature14575. PubMed DOI

Zhang W.; Li M.; Chen A.; Li L.; Zhu Y.; Xia Z.; Lu P.; Boullay P.; Wu L.; Zhu Y.; MacManus-Driscoll J. L.; Jia Q.; Zhou H.; Narayan J.; Zhang X.; Wang H. Two-dimensional layered oxide structures tailored by self-assembled layer stacking via interfacial strain. ACS Appl. Mater. Interfaces 2016, 8, 16845–16851. 10.1021/acsami.6b03773. PubMed DOI

van Genderen E.; Clabbers M. T. B.; Das P. P.; Stewart A.; Nederlof I.; Barentsen K. C.; Portillo Q.; Pannu N. S.; Nicolopoulos S.; Gruene T.; Abrahams J. P. Ab initio structure determination of nanocrystals of organic pharmaceutical compounds by electron diffraction at room temperature using a Timepix quantum area direct electron detector. Acta Crystallogr., Sect. A: Found. Adv. 2016, 72, 236–242. 10.1107/S2053273315022500. PubMed DOI PMC

Wang Y.; Takki S.; Cheung O.; Xu H.; Wan W.; Öhrström L.; Inge A. K. Elucidation of the elusive structure and formula of the active pharmaceutical ingredient bismuth subgallate by continuous rotation electron diffraction. Chem. Commun. 2017, 53, 7018–7021. 10.1039/C7CC03180G. PubMed DOI

Gruene T.; Wennmacher J. T. C.; Zaubitzer C.; Holstein J. J.; Heidler J.; Fecteau-Lefebvre A.; De Carlo S.; Müller E.; Goldie K. N.; Regeni I.; Li T.; Santiso-Quinones G.; Steinfeld G.; Handschin S.; van Genderen E.; van Bokhoven J. A.; Clever G. H.; Pantelic R. Rapid structure determination of microcrystalline molecular compounds using electron diffraction. Angew. Chem., Int. Ed. 2018, 57, 16313–16317. 10.1002/anie.201811318. PubMed DOI PMC

Jones C. G.; Martynowycz M. W.; Hattne J.; Fulton T. J.; Stoltz B. M.; Rodriguez J. A.; Nelson H. M.; Gonen T. The cryoEM method MicroED as a powerful tool for small molecule structure determination. ACS Cent. Sci. 2018, 4, 1587–1592. 10.1021/acscentsci.8b00760. PubMed DOI PMC

Tinti G.; Fröjdh E.; van Genderen E.; Gruene T.; Schmitt B.; de Winter D. A. M.; Weckhuysen B. M.; Abrahams J. P. Electron crystallography with the EIGER detector. IUCrJ 2018, 5, 190–199. 10.1107/S2052252518000945. PubMed DOI PMC

Andrusenko I.; Hamilton V.; Mugnaioli E.; Lanza A.; Hall C.; Potticary J.; Hall S. R.; Gemmi M.. The crystal structure of orthocetamol solved by 3D electron diffraction. Angew. Chem., Int. Ed. 2019, in press.10.1002/anie.201904564. PubMed DOI

Clabbers M. T. B.; Gruene T.; van Genderen E.; Abrahams J. P. Reducing dynamical electron scattering reveals hydrogen atoms. Acta Crystallogr., Sect. A: Found. Adv. 2019, 75, 82–93. 10.1107/S2053273318013918. PubMed DOI PMC

Nederlof I.; van Genderen E.; Li Y.-W.; Abrahams J. P. A Medipix quantum area detector allows rotation electron diffraction data collection from submicrometre three-dimensional protein crystals. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2013, 69, 1223–1230. 10.1107/S0907444913009700. PubMed DOI PMC

Shi D.; Nannenga B. L.; Iadanza M. G.; Gonen T. Three-dimensional electron crystallography of protein microcrystals. eLife 2013, 2, e0134510.7554/eLife.01345. PubMed DOI PMC

Nannenga B. L.; Shi D.; Leslie A. G. W.; Gonen T. High-resolution structure determination by continuous-rotation data collection in MicroED. Nat. Methods 2014, 11, 927–930. 10.1038/nmeth.3043. PubMed DOI PMC

Yonekura K.; Kato K.; Ogasawara M.; Tomita M.; Toyoshima C. Electron crystallography of ultrathin 3D protein crystals: Atomic model with charges. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 3368–3373. 10.1073/pnas.1500724112. PubMed DOI PMC

Shi D.; Nannenga B. L.; De La Cruz M. J.; Liu J.; Sawtelle S.; Calero G.; Reyes E. F.; Hattne J.; Gonen T. The collection of MicroED data for macromolecular crystallography. Nat. Protoc. 2016, 11, 895–904. 10.1038/nprot.2016.046. PubMed DOI PMC

Clabbers M. T. B.; van Genderen E.; Wan W.; Wiegers E. L.; Gruene T.; Abrahams J. P. Protein structure determination by electron diffraction using a single three-dimensional nanocrystal. Acta Crystallogr. D 2017, 73, 738–748. 10.1107/S2059798317010348. PubMed DOI PMC

de la Cruz M. J.; Hattne J.; Shi D.; Seidler P.; Rodriguez J.; Reyes F. E.; Sawaya M. R.; Cascio D.; Weiss S. C.; Kim S. K.; Hinck C. S.; Hinck A. P.; Calero G.; Eisenberg D.; Gonen T. Atomic-resolution structures from fragmented protein crystals with the cryoEM method MicroED. Nat. Methods 2017, 14, 399–402. 10.1038/nmeth.4178. PubMed DOI PMC

Purdy M. D.; Shi D.; Chrustowicz J.; Hattne J.; Gonen T.; Yeager M. MicroED structures of HIV-1 Gag CTD-SP1 reveal binding interactions with the maturation inhibitor bevirimat. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 13258–13263. 10.1073/pnas.1806806115. PubMed DOI PMC

Xu H.; Lebrette H.; Yang T.; Srinivas V.; Hovmöller S.; Högbom M.; Zou X. A rare lysozyme crystal form solved using highly redundant multiple electron diffraction datasets from micron-sized crystals. Structure 2018, 26, 667–675. 10.1016/j.str.2018.02.015. PubMed DOI

Lanza A.; Margheritis E.; Mugnaioli E.; Cappello V.; Garau G.; Gemmi M. Nanobeam precession-assisted 3D electron diffraction reveals a new polymorph of hen egg-white lysozyme. IUCrJ 2019, 6, 178–188. 10.1107/S2052252518017657. PubMed DOI PMC

Rodriguez J. A.; Ivanova M. I.; Sawaya M. R.; Cascio D.; Reyes F. E.; Shi D.; Sangwan S.; Guenther E. L.; Johnson L. M.; Zhang M.; Jiang L.; Arbing M. A.; Nannenga B. L.; Hattne J.; Whitelegge J.; Brewster A. S.; Messerschmidt M.; Boutet S.; Sauter N. K.; Gonen T.; Eisenberg D. S. Structure of the toxic core of α-synuclein from invisible crystals. Nature 2015, 525, 486–490. 10.1038/nature15368. PubMed DOI PMC

Sawaya M. R.; Rodriguez J.; Cascio D.; Collazo M. J.; Shi D.; Reyes F. E.; Hattne J.; Gonen T.; Eisenberg D. S. Ab initio structure determination from prion nanocrystals at atomic resolution by MicroED. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 11232–11236. 10.1073/pnas.1606287113. PubMed DOI PMC

Gallagher-Jones M.; Glynn C.; Boyer D. R.; Martynowycz M. W.; Hernandez E.; Miao J.; Zee C.-T.; Novikova I. V.; Goldschmidt L.; McFarlane H. T.; Helguera G. F.; Evans J. E.; Sawaya M. R.; Cascio D.; Eisenberg D. S.; Gonen T.; Rodriguez J. A. Sub-ångström cryo-EM structure of a prion protofibril reveals a polar clasp. Nat. Struct. Mol. Biol. 2018, 25, 131–134. 10.1038/s41594-017-0018-0. PubMed DOI PMC

Guenther E. L.; Ge P.; Trinh H.; Sawaya M. R.; Cascio D.; Boyer D. R.; Gonen T.; Zhou Z. H.; Eisenberg D. S. Atomic-level evidence for packing and positional amyloid polymorphism by segment from TDP-43 RRM2. Nat. Struct. Mol. Biol. 2018, 25, 311–319. 10.1038/s41594-018-0045-5. PubMed DOI PMC

Zee C.-T.; Glynn C.; Gallagher-Jones M.; Miao J.; Santiago C. G.; Cascio D.; Gonen T.; Sawaya M. R.; Rodriguez J. A. Homochiral and racemic MicroED structures of a peptide repeat from the ice-nucleation protein InaZ. IUCrJ 2019, 6, 197–205. 10.1107/S2052252518017621. PubMed DOI PMC

Bowden D.; Krysiak Y.; Palatinus L.; Tsivoulas D.; Plana-Ruiz S.; Sarakinou E.; Kolb U.; Stewart D.; Preuss M. A high-strength silicide phase in a stainless steel alloy designed for wear-resistant applications. Nat. Commun. 2018, 9, 1374.10.1038/s41467-018-03875-9. PubMed DOI PMC

Buixaderas E.; Kempa M.; Bovtun V.; Kadlec C.; Savinov M.; Borodavka F.; Vaněk P.; Steciuk G.; Palatinus L.; Dec J. Multiple polarization mechanisms across the ferroelectric phase transition of the tetragonal tungsten-bronze Sr0.35Ba0.69Nb2O6.04. Physical Review Materials 2018, 2, 124402.10.1103/PhysRevMaterials.2.124402. DOI

Cichocka M. O.; Ångström J.; Wang B.; Zou X.; Smeets S. High-throughput continuous rotation electron diffraction data acquisition via software automation. J. Appl. Crystallogr. 2018, 51, 1652–1661. 10.1107/S1600576718015145. PubMed DOI PMC

Cichocka M. O.; Lorgouilloux Y.; Smeets S.; Su J.; Wan W.; Caullet P.; Bats N.; McCusker L. B.; Paillaud J.-L.; Zou X. Multidimensional disorder in zeolite IM-18 revealed by combining transmission electron microscopy and X-ray powder diffraction analyses. Cryst. Growth Des. 2018, 18, 2441–2451. 10.1021/acs.cgd.8b00078. DOI

Das P. P.; Mugnaioli E.; Nicolopoulos S.; Tossi C.; Gemmi M.; Galanis A.; Borodi G.; Pop M. M. Crystal structures of two important pharmaceuticals solved by 3D precession electron diffraction tomography. Org. Process Res. Dev. 2018, 22, 1365–1372. 10.1021/acs.oprd.8b00149. DOI

Hynek J.; Brázda P.; Rohlíček J.; Londesborough M. G. S.; Demel J. Phosphinic acid based linkers: Building blocks in metal–organic framework chemistry. Angew. Chem., Int. Ed. 2018, 57, 5016–5019. 10.1002/anie.201800884. PubMed DOI

Karakulina O. M.; Demortière A.; Dachraoui W.; Abakumov A. M.; Hadermann J. In situ electron diffraction tomography using a liquid-electrochemical transmission electron microscopy cell for crystal structure determination of cathode materials for Li-ion batteries. Nano Lett. 2018, 18, 6286–6291. 10.1021/acs.nanolett.8b02436. PubMed DOI

Krysiak Y.; Barton B.; Marler B.; Neder R. B.; Kolb U. Ab initio structure determination and quantitative disorder analysis on nanoparticles by electron diffraction tomography. Acta Crystallogr., Sect. A: Found. Adv. 2018, 74, 93–101. 10.1107/S2053273317018277. PubMed DOI

Mayorga-Martinez C. C.; Sofer Z.; Luxa J.; Huber Š.; Sedmidubský D.; Brázda P.; Palatinus L.; Mikulics M.; Lazar P.; Medlín R.; Pumera M. TaS3 nanofibers: Layered trichalcogenide for high-performance electronic and sensing devices. ACS Nano 2018, 12, 464–473. 10.1021/acsnano.7b06853. PubMed DOI

Mugnaioli E.; Gemmi M.; Tu R.; David J.; Bertoni G.; Gaspari R.; De Trizio L.; Manna L. Ab initio structure determination of Cu2–xTe plasmonic nanocrystals by precession-assisted electron diffraction tomography and HAADF-STEM imaging. Inorg. Chem. 2018, 57, 10241–10248. 10.1021/acs.inorgchem.8b01445. PubMed DOI

Németh P.; Mugnaioli E.; Gemmi M.; Czuppon G.; Demény A.; Spötl C. A nanocrystalline monoclinic CaCO3 precursor of metastable aragonite. Sci. Adv. 2018, 4, eaau617810.1126/sciadv.aau6178. PubMed DOI PMC

Portolés-Gil N.; Lanza A.; Aliaga-Alcalde N.; Ayllón J. A.; Gemmi M.; Mugnaioli E.; López-Periago A. M.; Domingo C. Crystalline curcumin bioMOF obtained by precipitation in supercritical CO2 and structural determination by electron diffraction tomography. ACS Sustainable Chem. Eng. 2018, 6, 12309–12319. 10.1021/acssuschemeng.8b02738. DOI

Seo S.; Yang T.; Shin J.; Jo D.; Zou X.; Hong S. B. Two aluminophosphate molecular sieves built from pairs of enantiomeric structural building units. Angew. Chem., Int. Ed. 2018, 57, 3727–3732. 10.1002/anie.201800791. PubMed DOI

Steciuk G.; Barrier N.; Pautrat A.; Boullay P. Stairlike Aurivillius Phases in the pseudobinary Bi5Nb3O15–ABi2Nb2O9 (A = Ba and Sr) system: A comprehensive analysis using superspace group formalism. Inorg. Chem. 2018, 57, 3107–3115. 10.1021/acs.inorgchem.7b03026. PubMed DOI

Veis M.; Minár J.; Steciuk G.; Palatinus L.; Rinaldi C.; Cantoni M.; Kriegner D.; Tikuišis K. K.; Hamrle J.; Zahradník M.; Antoš R.; Železný J.; Šmejkal L.; Marti X.; Wadley P.; Campion R. P.; Frontera C.; Uhlířová K.; Duchoň T.; Kužel P.; Novák V.; Jungwirth T.; Výborný K. Band structure of CuMnAs probed by optical and photoemission spectroscopy. Phys. Rev. B: Condens. Matter Mater. Phys. 2018, 97, 125109.10.1103/PhysRevB.97.125109. DOI

Wang B.; Rhauderwiek T.; Inge A. K.; Xu H.; Yang T.; Huang Z.; Stock N.; Zou X. A porous cobalt tetraphosphonate metal–organic framework: Accurate structure and guest molecule location determined by continuous-rotation electron diffraction. Chem. - Eur. J. 2018, 24, 17429–17433. 10.1002/chem.201804133. PubMed DOI

Wiedemann D.; Lüdtke T.; Palatinus L.; Willinger E.; Willinger M. G.; Mühlbauer M. J.; Lerch M. At the Gates: The tantalum-rich phase Hf3Ta2O11 and its commensurately modulated structure. Inorg. Chem. 2018, 57, 14435–14442. 10.1021/acs.inorgchem.8b02642. PubMed DOI

Yuan S.; Qin J.-S.; Xu H.-Q.; Su J.; Rossi D.; Chen Y.; Zhang L.; Lollar C.; Wang Q.; Jiang H.-L.; Son D. H.; Xu H.; Huang Z.; Zou X.; Zhou H.-C. [Ti8Zr2O12(COO)16] cluster: An ideal inorganic building unit for photoactive metal–organic frameworks. ACS Cent. Sci. 2018, 4, 105–111. 10.1021/acscentsci.7b00497. PubMed DOI PMC

Zacharias N.; Karavassili F.; Das P.; Nicolopoulos S.; Oikonomou A.; Galanis A.; Rauch E.; Arenal R.; Portillo J.; Roque J.; Casablanca J.; Margiolaki I. A novelty for cultural heritage material analysis: transmission electron microscope (TEM) 3D electron diffraction tomography applied to Roman glass tesserae. Microchem. J. 2018, 138, 19–25. 10.1016/j.microc.2017.12.023. DOI

Zhang C.; Kapaca E.; Li J.; Liu Y.; Yi X.; Zheng A.; Zou X.; Jiang J.; Yu J. An extra-large-pore zeolite with 24 × 8 × 8-ring channels using a structure-directing agent derived from traditional Chinese medicine. Angew. Chem., Int. Ed. 2018, 57, 6486–6490. 10.1002/anie.201801386. PubMed DOI

Zhou Z.; Qiu Y.; Liang F.; Palatinus L.; Poupon M.; Yang T.; Cong R.; Lin Z.; Sun J. CsSiB3O7: A beryllium-free deep-ultraviolet nonlinear optical material discovered by the combination of electron diffraction and first-principles calculations. Chem. Mater. 2018, 30, 2203–2207. 10.1021/acs.chemmater.8b00545. DOI

Ångström J.; Jenei I. Z.; Spektor K.; Häussermann U. Formation of hydrous, pyroxene-related phases from LiAlSiO4 glass in high-pressure hydrothermal environments. ACS Earth Space Chem. 2019, 3, 8–16. 10.1021/acsearthspacechem.8b00091. DOI

Brázda P.; Palatinus L.; Babor M. Electron diffraction determines molecular absolute configuration in a pharmaceutical nanocrystal. Science 2019, 364, 667–669. 10.1126/science.aaw2560. PubMed DOI

Lanza A. E.; Gemmi M.; Bindi L.; Mugnaioli E.; Paar W. H.. Daliranite, PbHgAs2S5: determination of the incommensurately modulated structure and revision of the chemical formula. Acta Crystallogr. B 2019, in press.10.1107/S2052520619007340. PubMed DOI

Rondeau B.; Devouard B.; Jacob D.; Roussel J.; Stephant N.; Boulet C.; Mollé V.; Corre M.; Fritsch E.; Ferraris C.; Parodi G. C. Lasnierite, (Ca,Sr)(Mg,Fe)2Al(PO4)3, a new phosphate accompanying lazulite from Mt. Ibity, Madagascar: an example of structural characterization from dynamical refinement of precession electron diffraction data on submicrometre sample. Eur. J. Mineral. 2019, 31, 379–388. 10.1127/ejm/2019/0031-2817. DOI

Steciuk G.; David A.; Petricek V.; Palatinus L.; Mercey B.; Prellier W.; Pautrat A.; Boullay P. Precession electron diffraction tomography on twinned crystals: Application to CaTiO3 thin films. J. Appl. Crystallogr. 2019, 52, 626–636. 10.1107/S1600576719005569. DOI

Zou Z.; Habraken W. J. E. M.; Matveeva G.; Jensen A. C. S.; Bertinetti L.; Hood M. A.; Sun C.; Gilbert P. U. P. A.; Polishchuk I.; Pokroy B.; Mahamid J.; Politi Y.; Weiner S.; Werner P.; Bette S.; Dinnebier R.; Kolb U.; Zolotoyabko E.; Fratzl P. A hydrated crystalline calcium carbonate phase: Calcium carbonate hemihydrate. Science 2019, 363, 396–400. 10.1126/science.aav0210. PubMed DOI

Hand E.; Vogel G.; Garber K.; Kaiser J.; Servick K.; Clery D.; Service R. F.; Wadman M. Runners-up. Science 2018, 362, 1346–1351. 10.1126/science.362.6421.1346. PubMed DOI

Gemmi M.; Oleynikov P. Scanning reciprocal space for solving unknown structures: energy filtered diffraction tomography and rotation diffraction tomography methods. Z. Kristallogr. - Cryst. Mater. 2013, 228, 51–58. 10.1524/zkri.2013.1559. DOI

Boullay P.; Palatinus L.; Barrier N. Precession electron diffraction tomography for solving complex modulated structures: The case of Bi5Nb3O15. Inorg. Chem. 2013, 52, 6127–6135. 10.1021/ic400529s. PubMed DOI

Zhang D.; Oleynikov P.; Hovmöller S.; Zou X. Collecting 3D electron diffraction data by the rotation method. Z. Kristallogr. 2010, 225, 94–102. 10.1524/zkri.2010.1202. DOI

Wan W.; Sun J.; Su J.; Hovmöller S.; Zou X. Three-dimensional rotation electron diffraction: software RED for automated data collection and data processing. J. Appl. Crystallogr. 2013, 46, 1863–1873. 10.1107/S0021889813027714. PubMed DOI PMC

Palatinus L.; Chapuis G. SUPERFLIP – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 2007, 40, 786–790. 10.1107/S0021889807029238. DOI

Sheldrick G. M. A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112–122. 10.1107/S0108767307043930. PubMed DOI

Burla M. C.; Caliandro R.; Carrozzini B.; Cascarano G. L.; Cuocci C.; Giacovazzo C.; Mallamo M.; Mazzone A.; Polidori G. Crystal structure determination and refinement via SIR2014. J. Appl. Crystallogr. 2015, 48, 306–309. 10.1107/S1600576715001132. DOI

Grimes J. M.; Hall D. R.; Ashton A. W.; Evans G.; Owen R. L.; Wagner A.; McAuley K. E.; von Delft F.; Orville A. M.; Sorensen T.; Walsh M. A.; Ginn H. M.; Stuart D. I. Where is crystallography going?. Acta Crystallogr. D 2018, 74, 152–166. 10.1107/S2059798317016709. PubMed DOI PMC

Amunts A.; Brown A.; Bai X.-C.; Llácer J. L.; Hussain T.; Emsley P.; Long F.; Murshudov G.; Scheres S. H. W.; Ramakrishnan V. Structure of the yeast mitochondrial large ribosomal subunit. Science 2014, 343, 1485–1489. 10.1126/science.1249410. PubMed DOI PMC

Cheng Y. Single-particle cryo-EM at crystallographic resolution. Cell 2015, 161, 450–457. 10.1016/j.cell.2015.03.049. PubMed DOI PMC

Gemmi M.; La Placa M. G. I.; Galanis A. S.; Rauch E. F.; Nicolopoulos S. Fast electron diffraction tomography. J. Appl. Crystallogr. 2015, 48, 718–727. 10.1107/S1600576715004604. DOI

Vincent R.; Midgley P. A. Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy 1994, 53, 271–282. 10.1016/0304-3991(94)90039-6. DOI

Plana-Ruiz S.; Portillo J.; Estradé S.; Peiró F.; Kolb U.; Nicolopoulos S. Quasi-parallel precession diffraction: Alignment method for scanning transmission electron microscopes. Ultramicroscopy 2018, 193, 39–51. 10.1016/j.ultramic.2018.06.005. PubMed DOI

Gemmi M.; Merlini M.; Palatinus L.; Fumagalli P.; Hanfland M. Electron diffraction determination of 11.5 Å and HySo structures: Candidate water carriers to the Upper Mantle. Am. Am. Mineral. 2016, 101, 2645–2654. 10.2138/am-2016-5722. DOI

Wilke M.; Kabelitz A.; Gorelik T. E.; Guilherme Buzanich A.; Reinholz U.; Kolb U.; Rademann K.; Emmerling F. The crystallisation of copper(II) phenylphosphonates. Dalton T. 2016, 45, 17453–17463. 10.1039/C6DT02904C. PubMed DOI

Rozhdestvenskaya I. V.; Mugnaioli E.; Schowalter M.; Schmidt M. U.; Czank M.; Depmeier W.; Rosenauer A. The structure of denisovite, a fibrous nanocrystalline polytypic disordered ‘very complex’ silicate, studied by a synergistic multi-disciplinary approach employing methods of electron crystallography and X-ray powder diffraction. IUCrJ 2017, 4, 223–242. 10.1107/S2052252517002585. PubMed DOI PMC

Mugnaioli E.; Gemmi M. Single-crystal analysis of nanodomains by electron diffraction tomography: mineralogy at the order-disorder borderline. Z. Kristallogr. - Cryst. Mater. 2018, 233, 163–178. 10.1515/zkri-2017-2130. DOI

Georgieva D.; Jansen J.; Sikharulidze I.; Jiang L.; Zandbergen H. W.; Abrahams J. P. Evaluation of Medipix2 detector for recording electron diffraction data in low dose conditions. J. Instrum. 2011, 6, C01033.10.1088/1748-0221/6/01/C01033. DOI

Kodjikian S.; Klein H. Low-dose electron diffraction tomography (LD-EDT). Ultramicroscopy 2019, 200, 12–19. 10.1016/j.ultramic.2019.02.010. PubMed DOI

Yun Y.; Wan W.; Rabbani F.; Su J.; Xu H.; Hovmöller S.; Johnsson M.; Zou X. Phase identification and structure determination from multiphase crystalline powder samples by rotation electron diffraction. J. Appl. Crystallogr. 2014, 47, 2048–2054. 10.1107/S1600576714023875. DOI

Clabbers M. T. B.; Gruene T.; Parkhurst J. M.; Abrahams J. P.; Waterman D. G. Electron diffraction data processing with DIALS. Acta Cryst. D 2018, 74, 506–518. 10.1107/S2059798318007726. PubMed DOI PMC

Nannenga B. L.; Shi D.; Hattne J.; Reyes F. E.; Gonen T. Structure of catalase determined by MicroED. eLife 2014, 3, e0360010.7554/eLife.03600. PubMed DOI PMC

Palatinus L.; Petříček V.; Antunes Corrêa C. Structure refinement using precession electron diffraction tomography and dynamical diffraction: theory and implementation. Acta Crystallogr., Sect. A: Found. Adv. 2015, 71, 235–244. 10.1107/S2053273315001266. PubMed DOI

Palatinus L.; Corrêa C. A.; Steciuk G.; Jacob D.; Roussel P.; Boullay P.; Klemantová M.; Gemmi M.; Kopeček J.; Domeneghetti M. C.; Cámara F.; Petříček V. Structure refinement using precession electron diffraction tomography and dynamical diffraction: Tests on experimental data. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2015, 71, 740–751. 10.1107/S2052520615017023. PubMed DOI

Hirsch P.; Howie A.; Nicholson R.; Pashley D.; Whelan M.. Electron microscopy of thin crystals; Robert E. Krieger: Malabar, FL, 1977.

Zuo J. M.; Spence J. C. H. Automated structure factor refinement from convergent-beam patterns. Ultramicroscopy 1991, 35, 185–186. 10.1016/0304-3991(91)90071-D. DOI

Palatinus L.; Brázda P.; Boullay P.; Perez O.; Klementová M.; Petit S.; Eigner V.; Zaarour M.; Mintova S. Hydrogen positions in single nanocrystals revealed by electron diffraction. Science 2017, 355, 166–169. 10.1126/science.aak9652. PubMed DOI

Klementová M.; Karlík M.; Novák P.; Palatinus P. Structure determination of a new phase Ni8Ti5 by electron diffraction tomography. Intermetallics 2017, 85, 110–116. 10.1016/j.intermet.2017.02.003. DOI

Gonano B.; Breard Y.; Pelloquin D.; Caignaert V.; Perez O.; Pautrat A.; Boullay P.; Bazin P.; Le Breton J. M. Combining multiscale approaches for the structure determination of an iron layered oxysulfate: Sr4Fe2.5O7.25(SO4)0.5. Inorg. Chem. 2017, 56, 15241–15250. 10.1021/acs.inorgchem.7b02572. PubMed DOI

Klementová M.; Motlochová M.; Boháček J.; Kupčík J.; Palatinus L.; Pližingrová E.; Szatmáry L.; Šubrt J. Metatitanic acid pseudomorphs after titanyl sulfates: nanostructured sorbents and precursors for crystalline titania with desired particle size and shape. Cryst. Growth Des. 2017, 17, 6762–6769. 10.1021/acs.cgd.7b01349. DOI

de la Cruz M. J.; Martynowycz M. W.; Hattne J.; Gonen T. MicroED data collection with SerialEM. Ultramicroscopy 2019, 201, 77–80. 10.1016/j.ultramic.2019.03.009. PubMed DOI PMC

Samuha S.; Mugnaioli E.; Grushko B.; Kolb U.; Meshi L. Atomic structure solution of the complex quasicrystal approximant Al77Rh15Ru8 from electron diffraction data. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2014, 70, 999–1005. 10.1107/S2052520614022033. PubMed DOI

Drozhzhin O. A.; Sumanov V. D.; Karakulina O. M.; Abakumov A. M.; Hadermann J.; Baranov A. N.; Stevenson K. J.; Antipov E. V. Switching between solid solution and two-phase regimes in the Li1-xFe1-yMnyPO4 cathode materials during lithium (de)insertion: combined PITT, in situ XRPD and electron diffraction tomography study Electrochim. Electrochim. Acta 2016, 191, 149–157. 10.1016/j.electacta.2016.01.018. DOI

Feyand M.; Mugnaioli E.; Vermoortele F.; Bueken B.; Dieterich J. M.; Reimer T.; Kolb U.; de Vos D.; Stock N. Automated diffraction tomography for the structure elucidation of twinned, sub-micrometer crystals of a highly porous, catalytically active bismuth metal–organic framework. Angew. Chem., Int. Ed. 2012, 51, 10373–10376. 10.1002/anie.201204963. PubMed DOI

Brázda P.; Palatinus L.; Drahokoupil J.; Knížek K.; Buršík J. Calcium-induced cation ordering and large resistivity decrease in Pr0.3CoO2. J. Phys. Chem. Solids 2016, 96–97, 10–16. 10.1016/j.jpcs.2016.04.012. DOI

Neagu A.; Tai C.-W. Local disorder in Na0.5Bi0.5TiO3-piezoceramic determined by 3D electron diffuse scattering. Sci. Rep. 2017, 7, 12519.10.1038/s41598-017-12801-w. PubMed DOI PMC

Zhao H.; Krysiak Y.; Hoffmann K.; Barton B.; Molina-Luna L.; Neder R. B.; Kleebe H.-J.; Gesing T. M.; Schneider H.; Fischer R. X.; Kolb U. Elucidating structural order and disorder phenomena in mullite-type Al4B2O9 by automated electron diffraction tomography. J. Solid State Chem. 2017, 249, 114–123. 10.1016/j.jssc.2017.02.023. DOI

Willhammar T.; Sentosun K.; Mourdikoudis S.; Goris B.; Kurttepeli M.; Bercx M.; Lamoen D.; Partoens B.; Pastoriza-Santos I.; Pérez-Juste J.; Liz-Marzán L. M.; Bals S.; Van Tendeloo G. Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared. Nat. Commun. 2017, 8, 14925.10.1038/ncomms14925. PubMed DOI PMC

Baraldi A.; Buffagni E.; Capelletti R.; Mazzera M.; Fasoli M.; Lauria A.; Moretti F.; Vedda A.; Gemmi M. Eu incorporation into sol–gel silica for photonic applications: Spectroscopic and TEM evidences of α-quartz and Eu pyrosilicate nanocrystal growth. J. Phys. Chem. C 2013, 117, 26831–26848. 10.1021/jp4101174. DOI

Mayence A.; Wang D.; Salaz-Alvarez G.; Oleynikov P.; Bergström L. Probing planar defects in nanoparticle superlattices by 3D small-angle electron diffraction tomography and real space imaging. Nanoscale 2014, 6, 13803–13808. 10.1039/C4NR04156A. PubMed DOI

Colmont M.; Palatinus L.; Huvé M.; Kabbour H.; Saitzek S.; Djelal N.; Roussel P. On the use of dynamical diffraction theory to refine crystal structure from electron diffraction data: Application to KLa5O5(VO4)2, a material with promising luminescent properties. Inorg. Chem. 2016, 55, 2252–2260. 10.1021/acs.inorgchem.5b02663. PubMed DOI

Lepoittevin C. Structure resolution by electron diffraction tomography of the complex layered iron-rich Fe-2234-type Sr5Fe6O15.4. J. J. Solid State Chem. 2016, 242, 228–235. 10.1016/j.jssc.2016.08.004. DOI

Rickert K.; Boullay P.; Malo S.; Caignaert V.; Poeppelmeier K. R. A rutile chevron modulation in delafossite-like Ga3-xIn3TixO9-x/2. Inorg. Chem. 2016, 55, 4403–4409. 10.1021/acs.inorgchem.6b00147. PubMed DOI

Steciuk G.; Boullay P.; Pautrat A.; Barrier N.; Caignaert V.; Palatinus L. Unusual relaxor ferroelectric behavior in stairlike aurivillius phases. Inorg. Chem. 2016, 55, 8881–8891. 10.1021/acs.inorgchem.6b01373. PubMed DOI

David J.; Rossella F.; Rocci M.; Ercolani D.; Sorba L.; Beltram F.; Gemmi M.; Roddaro S. Crystal phases in hybrid metal–semiconductor nanowire devices. Nano Lett. 2017, 17, 2336–2341. 10.1021/acs.nanolett.6b05223. PubMed DOI

Mugnaioli E.; Gemmi M.; Merlini M.; Gregorkiewitz M. (Na,)5[MnO2]13 nanorods: a new tunnel structure for electrode materials determined ab initio and refined through a combination of electron and synchrotron diffraction data. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2016, 72, 893–903. 10.1107/S2052520616015651. PubMed DOI PMC

Rotella H.; Copie O.; Steciuk G.; Ouerdane H.; Boullay P.; Roussel P.; Morales M.; David A.; Pautrat A.; Mercey B.; Lutterotti L.; Chateigner D.; Prellier W. Structural analysis of strained LaVO3 thin films. J. Phys.: Condens. Matter 2015, 27, 175001.10.1088/0953-8984/27/17/175001. PubMed DOI

Bhat S.; Wiehl L.; Molina-Luna L.; Mugnaioli E.; Lauterbach S.; Sicolo S.; Kroll P.; Duerrschnabel M.; Nishiyama N.; Kolb U.; Albe K.; Kleebe H.-J.; Riedel R. High-pressure synthesis of novel boron oxynitride B6N4O3 with sphalerite type structure. Chem. Mater. 2015, 27, 5907–5914. 10.1021/acs.chemmater.5b01706. DOI

Lepoittevin C.; Jeanneau J.; Toulemonde P.; Sulpice A.; Núñez-Regueiro M. Ba19Cr12O45: A high pressure chromate with an original structure solved by electron diffraction tomography and powder X-ray diffraction. Inorg. Chem. 2017, 56, 6404–6409. 10.1021/acs.inorgchem.7b00481. PubMed DOI

Andrusenko I.; Mugnaioli E.; Gorelik T. E.; Koll D.; Panthöfer M.; Tremel W.; Kolb U. Structure analysis of titanate nanorods by automated electron diffraction tomography. Acta Crystallogr., Sect. B: Struct. Sci. 2011, 67, 218–225. 10.1107/S0108768111014534. PubMed DOI

Weber D.; Huber M.; Gorelik T. E.; Abakumov A. M.; Becker N.; Niehaus O.; Schwickert C.; Culver S. P.; Boysen H.; Senyshyn A.; Pöttgen R.; Dronskowski R.; Ressler T.; Kolb U.; Lerch M. Molybdenum oxide nitrides of the Mo2(O,N,□)5 type: On the way to Mo2O5. Inorg. Chem. 2017, 56, 8782–8792. 10.1021/acs.inorgchem.7b00551. PubMed DOI

Gemmi M.; Campostrini I.; Demartin F.; Gorelik T. E.; Gramaccioli C. M. Structure of the new mineral sarrabusite, Pb5CuCl4(SeO3)4, solved by manual electron-diffraction tomography. Acta Crystallogr., Sect. B: Struct. Sci. 2012, 68, 15–23. 10.1107/S010876811104688X. PubMed DOI

Plášil J.; Palatinus L.; Rohlíček J.; Houdková L.; Klementová M.; Goliáš V.; Škácha P. Crystal structure of lead uranyl carbonate mineral widenmannite: Precession electron-diffraction and synchrotron powder-diffraction study. Am. Mineral. 2014, 99, 276–282. 10.2138/am.2014.4671. DOI

Majzlan J.; Palatinus L.; Plášil J. Crystal structure of Fe2(AsO4)(HAsO4)(OH)(H2O)3, a dehydration product of kaňkite. Eur. J. Mineral. 2016, 28, 63–70. 10.1127/ejm/2015/0027-2495. DOI

Colombo F.; Mugnaioli E.; Vallcorba O.; Garcia A.; Goñi A. R.; Rius J. Crystal structure determination of karibibite, an Fe3+ arsenite, using electron diffraction tomography. Mineral. Mag. 2017, 81, 1191–1202. 10.1180/minmag.2016.080.159. DOI

Capitani G. C.; Mugnaioli E.; Rius J.; Gentile P.; Catelani T.; Lucotti A.; Kolb U. The Bi sulfates from the Alfenza Mine, Crodo, Italy: An automatic electron diffraction tomography (ADT) study. Am. Mineral. 2014, 99, 500–510. 10.2138/am.2014.4446. DOI

Mugnaioli E.; Reyes-Gasga J.; Kolb U.; Hemmerlé J.; Brès É. F. Evidence of noncentrosymmetry of human tooth hydroxyapatite crystals. Chem. - Eur. J. 2014, 20, 6849–6852. 10.1002/chem.201402275. PubMed DOI

Capitani G. C.; Mugnaioli E.; Guastoni A. What is the actual structure of samarskite-(Y)? A TEM investigation of metamict samarskite from the Garnet Codera dike pegmatite (Central Italian Alps). Am. Mineral. 2016, 101, 1679–1690. 10.2138/am-2016-5605. DOI

Mugnaioli E.; Andrusenko I.; Schüler T.; Loges N.; Dinnebier R. E.; Panthöfer M.; Tremel W.; Kolb U. Ab initio structure determination of vaterite by automated electron diffraction. Angew. Chem., Int. Ed. 2012, 51, 7041–7045. 10.1002/anie.201200845. PubMed DOI

Pignatelli I.; Marrocchi Y.; Mugnaioli E.; Bourdelle F.; Gounelle M. Mineralogical, crystallographic and redox features of the earliest stages of fluid alteration in CM chondrites. Geochim. Cosmochim. Acta 2017, 209, 106–122. 10.1016/j.gca.2017.04.017. DOI

Viti C.; Brogi A.; Liotta D.; Mugnaioli E.; Spiess R.; Dini A.; Zucchi M.; Vannuccini G. Seismic slip recorded in tourmaline fault mirrors from Elba Island (Italy). J. Struct. Geol. 2016, 86, 1–12. 10.1016/j.jsg.2016.02.013. DOI

Gemmi M.; Fischer J.; Merlini M.; Poli S.; Fumagalli P.; Mugnaioli E.; Kolb U. A new hydrous Al-bearing pyroxene as a water carrier in subduction zones. Earth Planet. Sci. Lett. 2011, 310, 422–428. 10.1016/j.epsl.2011.08.019. DOI

Pignatelli I.; Mugnaioli E.; Hybler J.; Mosser-Ruck R.; Cathelineau M.; Michau N. A multi-technique characterization of cronstedtite synthesized by iron-clay interaction in a step-by-step cooling procedure. Clays Clay Miner. 2013, 61, 277–289. 10.1346/CCMN.2013.0610408. DOI

Koch-Müller M.; Mugnaioli E.; Rhede D.; Speziale S.; Kolb U.; Wirth R. Synthesis of a quenchable high-pressure form of magnetite (h-Fe3O4) with composition Fe1(Fe2+0.75Mg0.26)Fe2(Fe3+0.70Cr0.15Al0.11Si0.04)2O4. Am. Mineral. 2014, 99, 2405–2415. 10.2138/am-2014-4944. DOI

Willhammar T.; Burton A. W.; Yun Y.; Sun J.; Afeworki M.; Strohmaier K. G.; Vroman H.; Zou X. EMM-23: A stable high-silica multidimensional zeolite with extra-large trilobe-shaped channels. J. Am. Chem. Soc. 2014, 136, 13570–13573. 10.1021/ja507615b. PubMed DOI

Jiang J.; Yun Y.; Zou X.; Jorda J. L.; Corma A. ITQ-54: a multi-dimensional extra-large pore zeolite with 20 × 14 × 12-ring channels. Chem. Sci. 2015, 6, 480–485. 10.1039/C4SC02577F. PubMed DOI PMC

Simancas J.; Simancas R.; Bereciartua P. J.; Jorda J. L.; Rey F.; Corma A.; Nicolopoulos S.; Das P. P.; Gemmi M.; Mugnaioli E. Ultrafast electron diffraction tomography for structure determination of the new zeolite ITQ-58. J. Am. Chem. Soc. 2016, 138, 10116–10119. 10.1021/jacs.6b06394. PubMed DOI PMC

Willhammar T.; Su J.; Yun Y.; Zou X.; Afeworki M.; Weston S. C.; Vroman H. B.; Lonergan W. W.; Strohmaier K. G. High-throughput synthesis and structure of zeolite ZSM-43 with two-directional 8-ring channels. Inorg. Chem. 2017, 56, 8856–8864. 10.1021/acs.inorgchem.7b00752. PubMed DOI

Rius J.; Mugnaioli E.; Vallcorba O.; Kolb U. Application of δ recycling to electron automated diffraction tomography data from inorganic crystalline nanovolumes. Acta Crystallogr., Sect. A: Found. Crystallogr. 2013, 69, 396–407. 10.1107/S0108767313009549. PubMed DOI

Zhang Y.-B.; Su J.; Furukawa H.; Yun Y.; Gándara F.; Duong A.; Zou X.; Yaghi O. M. Single-crystal structure of a covalent organic framework. J. Am. Chem. Soc. 2013, 135, 16336–16339. 10.1021/ja409033p. PubMed DOI

Bellussi G.; Montanari E.; Di Paola E.; Millini R.; Carati A.; Rizzo C.; O’Neil Parker W. Jr.; Gemmi M.; Mugnaioli E.; Kolb U.; Zanardi S. ECS-3: a crystalline hybrid organic–inorganic aluminosilicate with open porosity. Angew. Chem., Int. Ed. 2012, 51, 666–669. 10.1002/anie.201105496. PubMed DOI

Janssen T.; Chapuis G.; de Boissieu M.. Aperiodic Crystals: from modulated phases to quasicrystals; Oxford University Press: New York, 2007.

van Smaalen S.Incommensurate crystallography; Oxford University Press: New York, 2007.

Li L.; Boullay P.; Lu P.; Wang X.; Jian J.; Huang J.; Gao X.; Misra S.; Zhang W.; Perez O.; Steciuk G.; Chen A.; Zhang X.; Wang H. Novel layered supercell structure from Bi2AlMnO6 for multifunctionalities. Nano Lett. 2017, 17, 6575–6582. 10.1021/acs.nanolett.7b02284. PubMed DOI

Singh D.; Yun Y.; Wan W.; Grushko B.; Zou X.; Hovmöller S. A complex pseudo-decagonal quasicrystal approximant, Al37(Co,Ni)15.5, solved by rotation electron diffraction. J. Appl. Crystallogr. 2014, 47, 215–221. 10.1107/S1600576713029294. DOI

Henderson R.; Baldwin J. M.; Ceska T. A.; Zemlin F.; Beckmann E.; Downing K. H. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 1990, 213, 899–929. 10.1016/S0022-2836(05)80271-2. PubMed DOI

Kühlbrandt W.; Wang D. N.; Fujiyoshi Y. Atomic model of plant light-harvesting complex by electron crystallography. Nature 1994, 367, 614–621. 10.1038/367614a0. PubMed DOI

Grigorieff N.; Ceska T. A.; Downing K. H.; Baldwin J. M.; Henderson R. Electron-crystallographic refinement of the structure of bacteriorhodopsin. J. Mol. Biol. 1996, 259, 393–421. 10.1006/jmbi.1996.0328. PubMed DOI

Henderson R.; Unwin N. T. Three-dimensional model of purple membrane obtained by electron microscopy. Nature 1975, 257, 28–32. 10.1038/257028a0. PubMed DOI

Glaeser R. M.; Downing K. H. High-resolution electron crystallography of protein molecules. Ultramicroscopy 1993, 52, 478–486. 10.1016/0304-3991(93)90064-5. PubMed DOI

Subramanian G.; Basu S.; Liu H.; Zuo J. M.; Spence J. C. H. Solving protein nanocrystals by cryo-EM diffraction: multiple scattering artifacts. Ultramicroscopy 2015, 148, 87–93. 10.1016/j.ultramic.2014.08.013. PubMed DOI

Clabbers M. T. B.; Abrahams J. P. Electron diffraction and three-dimensional crystallography for structural biology. Crystallogr. Rev. 2018, 24, 176–204. 10.1080/0889311X.2018.1446427. DOI

Henderson R. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy and unstained biological molecules. Q. Rev. Biophys. 1995, 28, 171–193. 10.1017/S003358350000305X. PubMed DOI

Martin D. C.; Chen J.; Yang J.; Drummy L. F.; Kübel C. High resolution electron microscopy of ordered polymers and organic molecular crystals: Recent developments and future possibilities. J. Polym. Sci., Part B: Polym. Phys. 2005, 43, 1749–1778. 10.1002/polb.20419. DOI

Kolb U.; Gorelik T. E.; Mugnaioli E.; Stewart A. Structural characterization of organics using manual and automated electron diffraction. Polym. Rev. 2010, 50, 385–409. 10.1080/15583724.2010.494238. DOI

Li X.; Mooney P.; Zheng S.; Booth C. R.; Braunfeld M. B.; Gubbens S.; Agard D. A.; Cheng Y. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods 2013, 10, 584–590. 10.1038/nmeth.2472. PubMed DOI PMC

Llopart X.; Campbell M.; Dinapoli R.; San Segundo D.; Pernigotti E. Medipix2: A 64-k pixel readout chip with 55 μm square elements working in single photon counting mode. IEEE Trans. Nucl. Sci. 2002, 49, 2279–2283. 10.1109/TNS.2002.803788. DOI

Jiang L.; Georgieva D.; Nederlof I.; Liu Z.; Abrahams J. P. Image processing and lattice determination for three-dimensional nanocrystals. Microsc. Microanal. 2011, 17, 879–885. 10.1017/S1431927611012244. PubMed DOI

Smeets S.; Wan W. Serial electron crystallography: merging diffraction data through rank aggregation. J. Appl. Crystallogr. 2017, 50, 885–892. 10.1107/S1600576717005854. DOI

Arndt U. W.; Wonacott A. J.. The rotation method in crystallography; Elsevier/North-Holland: Amsterdam, 1977.

Trampari S.; Valmas A.; Logotheti S.; Saslis S.; Fili S.; Spiliopoulou M.; Beckers D.; Degen T.; Nenert G.; Fitch A. N.; Calamiotou M.; Karavassili F.; Margiolaki I. J. J. Appl. Crystallogr. 2018, 51, 1671–1683. 10.1107/S1600576718013936. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Ionisation of atoms determined by kappa refinement against 3D electron diffraction data

. 2024 Oct 21 ; 15 (1) : 9066. [epub] 20241021

Reactive Noble-Gas Compounds Explored by 3D Electron Diffraction: XeF2-MnF4 Adducts and a Facile Sample Handling Procedure

. 2024 Sep 25 ; 10 (9) : 1733-1741. [epub] 20240814

Cryo-tomography and 3D Electron Diffraction Reveal the Polar Habit and Chiral Structure of the Malaria Pigment Crystal Hemozoin

. 2024 Aug 28 ; 10 (8) : 1504-1514. [epub] 20240704

Applying 3D ED/MicroED workflows toward the next frontiers

. 2024 Jun 01 ; 80 (Pt 6) : 179-189. [epub] 20240507

Dynamical refinement with multipolar electron scattering factors

. 2024 May 01 ; 11 (Pt 3) : 309-324. [epub] 20240501

ROY Crystallization on Poly(ethylene) Fibers, a Model for Bed Net Crystallography

. 2024 Mar 12 ; 36 (5) : 2432-2440. [epub] 20240227

Structure and absolute configuration of natural fungal product beauveriolide I, isolated from Cordyceps javanica, determined by 3D electron diffraction

. 2024 Mar 01 ; 80 (Pt 3) : 56-61. [epub] 20240227

Unveiling the topology of partially disordered micro-crystalline nitro-perylenediimide with X-aggregate stacking: an integrated approach

. 2024 Jan 03 ; 15 (2) : 490-499. [epub] 20231123

Refining short-range order parameters from the three-dimensional diffuse scattering in single-crystal electron diffraction data

. 2024 Jan 01 ; 11 (Pt 1) : 82-91. [epub] 20240101

Quantitative three-dimensional local order analysis of nanomaterials through electron diffraction

. 2023 Oct 16 ; 14 (1) : 6512. [epub] 20231016

Accurate structure models and absolute configuration determination using dynamical effects in continuous-rotation 3D electron diffraction data

. 2023 Jun ; 15 (6) : 848-855. [epub] 20230420

Catching a New Zeolite as a Transition Material during Deconstruction

. 2023 Apr 26 ; 145 (16) : 9081-9091. [epub] 20230411

Massive Accumulation of Strontium and Barium in Diplonemid Protists

. 2023 Feb 28 ; 14 (1) : e0327922. [epub] 20230116

Accurate lattice parameters from 3D electron diffraction data. I. Optical distortions

. 2022 Nov 01 ; 9 (Pt 6) : 735-755. [epub] 20220927

Design of metastable oxychalcogenide phases by topochemical (de)intercalation of sulfur in La2O2S2

. 2021 Jun 14 ; 12 (1) : 3605. [epub] 20210614

A new electron diffraction approach for structure refinement applied to Ca3Mn2O7

. 2021 May 01 ; 77 (Pt 3) : 196-207. [epub] 20210317

Hydrogen disorder in kaatialaite Fe[AsO2(OH)2]5H2O from Jáchymov, Czech Republic: determination from low-temperature 3D electron diffraction

. 2021 Jan 01 ; 8 (Pt 1) : 116-123. [epub] 20210101

Exotic Compositional Ordering in Manganese-Nickel-Arsenic (Mn-Ni-As) Intermetallics

. 2020 Dec 07 ; 59 (50) : 22382-22387. [epub] 20201013

New zeolite-like RUB-5 and its related hydrous layer silicate RUB-6 structurally characterized by electron microscopy

. 2020 May 01 ; 7 (Pt 3) : 522-534. [epub] 20200421

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...