3D Electron Diffraction: The Nanocrystallography Revolution
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
31482114
PubMed Central
PMC6716134
DOI
10.1021/acscentsci.9b00394
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Crystallography of nanocrystalline materials has witnessed a true revolution in the past 10 years, thanks to the introduction of protocols for 3D acquisition and analysis of electron diffraction data. This method provides single-crystal data of structure solution and refinement quality, allowing the atomic structure determination of those materials that remained hitherto unknown because of their limited crystallinity. Several experimental protocols exist, which share the common idea of sampling a sequence of diffraction patterns while the crystal is tilted around a noncrystallographic axis, namely, the goniometer axis of the transmission electron microscope sample stage. This Outlook reviews most important 3D electron diffraction applications for different kinds of samples and problematics, related with both materials and life sciences. Structure refinement including dynamical scattering is also briefly discussed.
Center for Nanotechnology Istituto Italiano di Tecnologia Piazza S Silvestro 12 56127 Pisa Italy
Department of Biology and Chemistry Paul Scherrer Institut CH 5232 Villigen PSI Switzerland
Leiden Institute of Biology Leiden University Sylviusweg 72 2333 BE Leiden The Netherlands
Zobrazit více v PubMed
Belsky A.; Hellenbrandt M.; Karen V. L.; Luksch P. New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. Acta Crystallogr., Sect. B: Struct. Sci. 2002, 58, 364–369. 10.1107/S0108768102006948. PubMed DOI
Downs R. T.; Hall-Wallace M. The American Mineralogist Crystal Structure Database. Am. Mineral. 2003, 88, 247–250.
Gražulis S.; Chateigner D.; Downs R. T.; Yokochi A. F. T.; Quiros M.; Lutterotti L.; Manakova E.; Butkus J.; Moeck P.; Le Bail A. Crystallography Open Database – an open-access collection of crystal structures. J. Appl. Crystallogr. 2009, 42, 726–729. 10.1107/S0021889809016690. PubMed DOI PMC
Groom C. R.; Bruno I. J.; Lightfoot M. P.; Ward S. C. The Cambridge Structural Database. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2016, 72, 171–179. 10.1107/S2052520616003954. PubMed DOI PMC
Burley S. K.; Berman H. M.; Bhikadiya C.; Bi C.; Chen L.; Di Costanzo L.; Christie C.; Dalenberg K.; Duarte J. M.; Dutta S.; Feng Z.; Ghosh S.; Goodsell D. S.; Green R. K.; Guranović V.; Guzenko D.; Hudson B. P.; Kalro T.; Liang Y.; Lowe R.; Namkoong H.; Peisach E.; Periskova I.; Prlić A.; Randle C.; Rose A.; Rose P.; Sala R.; Sekharan M.; Shao C.; Tan L.; Tao Y.-P.; Valasatava Y.; Voigt M.; Westbrook J.; Woo J.; Yang H.; Young J.; Zhuravleva M.; Zardecki C. RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Res. 2019, 47, D464–D474. 10.1093/nar/gky1004. PubMed DOI PMC
Cowley J. M.Electron diffraction techniques; Oxford University Press: New York, 1992; Vols. 1 and 2.
Dorset D. L.Structural electron crystallography; Plenum Pres: New York, 1995.
Dorset D. L.; Hauptman H. A. Direct phase determination for quasi-kinematical electron diffraction intensity data from organic microcrystals. Ultramicroscopy 1976, 1, 195–201. 10.1016/0304-3991(76)90034-6. PubMed DOI
Dorset D. L. Electron crystallography. Acta Crystallogr., Sect. B: Struct. Sci. 1996, 52, 753–769. 10.1107/S0108768196005599. PubMed DOI
Weirich T. E.; Ramlau R.; Simon A.; Hovmöller S.; Zou X. A crystal structure determined with 0.02 Å accuracy by electron microscopy. Nature 1996, 382, 144–146. 10.1038/382144a0. DOI
Weirich T. E.; Zou X.; Ramlau R.; Simon A.; Cascarano G. L.; Giacovazzo C.; Hovmöller S. Structures of nanometre-size crystals determined from selected-area electron diffraction data. Acta Crystallogr., Sect. A: Found. Crystallogr. 2000, 56, 29–35. 10.1107/S0108767399009605. PubMed DOI
Gonen T.; Cheng Y.; Sliz P.; Hiroaki Y.; Fujiyoshi Y.; Harrison S. C.; Walz T. Lipid-protein interactions in double-layered two-dimensional AQP0 crystals. Nature 2005, 438, 633–638. 10.1038/nature04321. PubMed DOI PMC
Dorset D. L.; Roth W. J.; Gilmore C. J. Electron crystallography of zeolites – the MWW family as a test of direct 3D structure determination. Acta Crystallogr., Sect. A: Found. Crystallogr. 2005, 61, 516–527. 10.1107/S0108767305024670. PubMed DOI
Gemmi M.; Zou X.; Hovmöller S.; Migliori A.; Vennström M.; Andersson Y. Structure of Ti2P solved by three-dimensional electron diffraction data collected with the precession technique and high-resolution electron microscopy. Acta Crystallogr., Sect. A: Found. Crystallogr. 2003, 59, 117–126. 10.1107/S0108767302022559. PubMed DOI
Kolb U.; Gorelik T.; Kübel C.; Otten M. T.; Hubert D. Towards automated diffraction tomography: Part I—Data acquisition. Ultramicroscopy 2007, 107, 507–513. 10.1016/j.ultramic.2006.10.007. PubMed DOI
Kolb U.; Gorelik T.; Otten M. T. Towards automated diffraction tomography. Part II—Cell parameter determination. Ultramicroscopy 2008, 108, 763–772. 10.1016/j.ultramic.2007.12.002. PubMed DOI
Mugnaioli E.; Gorelik T.; Kolb U. Ab Initio” structure solution from electron diffraction data obtained by a combination of automated diffraction tomography and precession technique. Ultramicroscopy 2009, 109, 758–765. 10.1016/j.ultramic.2009.01.011. PubMed DOI
Kolb U.; Mugnaioli E.; Gorelik T. E. Automated electron diffraction tomography – A new tool for nano crystal structure analysis. Cryst. Res. Technol. 2011, 46, 542–554. 10.1002/crat.201100036. DOI
Birkel C. S.; Mugnaioli E.; Gorelik T.; Kolb U.; Panthöfer M.; Tremel W. Solution synthesis of a new thermoelectric Zn1+xSb nanophase and its structure determination using automated electron diffraction tomography. J. Am. Chem. Soc. 2010, 132, 9881–9889. 10.1021/ja1035122. PubMed DOI
Rozhdestvenskaya I.; Mugnaioli E.; Czank M.; Depmeier W.; Kolb U.; Reinholdt A.; Weirich T. The structure of charoite, (K,Sr,Ba,Mn)15–16(Ca,Na)32[(Si70(O,OH)180)](OH,F)4.0·nH2O, solved by conventional and automated electron diffraction. Mineral. Mag. 2010, 74, 159–177. 10.1180/minmag.2010.074.1.159. DOI
Denysenko D.; Grzywa M.; Tonigold M.; Streppel B.; Krkljus I.; Hirscher M.; Mugnaioli E.; Kolb U.; Hanss J.; Volkmer D. Elucidating gating effects for hydrogen sorption in MFU-4-type triazolate-based metal–organic frameworks featuring different pore sizes. Chem. - Eur. J. 2011, 17, 1837–1848. 10.1002/chem.201001872. PubMed DOI
Jiang J.; Jorda J. L.; Yu J.; Baumes L. A.; Mugnaioli E.; Diaz-Cabanas M. J.; Kolb U.; Corma A. Synthesis and structure determination of the hierarchical meso-microporous zeolite ITQ-43. Science 2011, 333, 1131–1134. 10.1126/science.1208652. PubMed DOI
Palatinus L.; Klementová M.; Dřínek V.; Jarošova M.; Petříček V. An incommensurately modulated structure of η’-phase of Cu3+xSi determined by quantitative electron diffraction tomography. Inorg. Chem. 2011, 50, 3743–3751. 10.1021/ic200102z. PubMed DOI
Gorelik T. E.; van de Streek J.; Kilbinger A. F. M.; Brunklaus G.; Kolb U. Ab-initio crystal structure analysis and refinement approaches of oligo p-benzamides based on electron diffraction data. Acta Crystallogr., Sect. B: Struct. Sci. 2012, 68, 171–181. 10.1107/S0108768112003138. PubMed DOI
Martínez-Franco R.; Moliner M.; Yun Y.; Sun J.; Wan W.; Zou X.; Corma A. Synthesis of an extra-large molecular sieve using proton sponges as organic structure-directing agents. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 3749–3754. 10.1073/pnas.1220733110. PubMed DOI PMC
Förster C.; Gorelik T. E.; Kolb U.; Ksenofontov V.; Heinze K. Crystalline non-equilibrium phase of a cobalt(II) complex with tridentate ligands. Eur. J. Inorg. Chem. 2015, 2015, 920–924. 10.1002/ejic.201403200. DOI
Guo P.; Shin J.; Greenaway A. G.; Min J. G.; Su J.; Choi H. J.; Liu L.; Cox P. A.; Hong S. B.; Wright P. A.; Zou X. A Zeolite Family with expanding structural complexity and embedded isoreticular structures. Nature 2015, 524, 74–78. 10.1038/nature14575. PubMed DOI
Zhang W.; Li M.; Chen A.; Li L.; Zhu Y.; Xia Z.; Lu P.; Boullay P.; Wu L.; Zhu Y.; MacManus-Driscoll J. L.; Jia Q.; Zhou H.; Narayan J.; Zhang X.; Wang H. Two-dimensional layered oxide structures tailored by self-assembled layer stacking via interfacial strain. ACS Appl. Mater. Interfaces 2016, 8, 16845–16851. 10.1021/acsami.6b03773. PubMed DOI
van Genderen E.; Clabbers M. T. B.; Das P. P.; Stewart A.; Nederlof I.; Barentsen K. C.; Portillo Q.; Pannu N. S.; Nicolopoulos S.; Gruene T.; Abrahams J. P. Ab initio structure determination of nanocrystals of organic pharmaceutical compounds by electron diffraction at room temperature using a Timepix quantum area direct electron detector. Acta Crystallogr., Sect. A: Found. Adv. 2016, 72, 236–242. 10.1107/S2053273315022500. PubMed DOI PMC
Wang Y.; Takki S.; Cheung O.; Xu H.; Wan W.; Öhrström L.; Inge A. K. Elucidation of the elusive structure and formula of the active pharmaceutical ingredient bismuth subgallate by continuous rotation electron diffraction. Chem. Commun. 2017, 53, 7018–7021. 10.1039/C7CC03180G. PubMed DOI
Gruene T.; Wennmacher J. T. C.; Zaubitzer C.; Holstein J. J.; Heidler J.; Fecteau-Lefebvre A.; De Carlo S.; Müller E.; Goldie K. N.; Regeni I.; Li T.; Santiso-Quinones G.; Steinfeld G.; Handschin S.; van Genderen E.; van Bokhoven J. A.; Clever G. H.; Pantelic R. Rapid structure determination of microcrystalline molecular compounds using electron diffraction. Angew. Chem., Int. Ed. 2018, 57, 16313–16317. 10.1002/anie.201811318. PubMed DOI PMC
Jones C. G.; Martynowycz M. W.; Hattne J.; Fulton T. J.; Stoltz B. M.; Rodriguez J. A.; Nelson H. M.; Gonen T. The cryoEM method MicroED as a powerful tool for small molecule structure determination. ACS Cent. Sci. 2018, 4, 1587–1592. 10.1021/acscentsci.8b00760. PubMed DOI PMC
Tinti G.; Fröjdh E.; van Genderen E.; Gruene T.; Schmitt B.; de Winter D. A. M.; Weckhuysen B. M.; Abrahams J. P. Electron crystallography with the EIGER detector. IUCrJ 2018, 5, 190–199. 10.1107/S2052252518000945. PubMed DOI PMC
Andrusenko I.; Hamilton V.; Mugnaioli E.; Lanza A.; Hall C.; Potticary J.; Hall S. R.; Gemmi M.. The crystal structure of orthocetamol solved by 3D electron diffraction. Angew. Chem., Int. Ed. 2019, in press.10.1002/anie.201904564. PubMed DOI
Clabbers M. T. B.; Gruene T.; van Genderen E.; Abrahams J. P. Reducing dynamical electron scattering reveals hydrogen atoms. Acta Crystallogr., Sect. A: Found. Adv. 2019, 75, 82–93. 10.1107/S2053273318013918. PubMed DOI PMC
Nederlof I.; van Genderen E.; Li Y.-W.; Abrahams J. P. A Medipix quantum area detector allows rotation electron diffraction data collection from submicrometre three-dimensional protein crystals. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2013, 69, 1223–1230. 10.1107/S0907444913009700. PubMed DOI PMC
Shi D.; Nannenga B. L.; Iadanza M. G.; Gonen T. Three-dimensional electron crystallography of protein microcrystals. eLife 2013, 2, e0134510.7554/eLife.01345. PubMed DOI PMC
Nannenga B. L.; Shi D.; Leslie A. G. W.; Gonen T. High-resolution structure determination by continuous-rotation data collection in MicroED. Nat. Methods 2014, 11, 927–930. 10.1038/nmeth.3043. PubMed DOI PMC
Yonekura K.; Kato K.; Ogasawara M.; Tomita M.; Toyoshima C. Electron crystallography of ultrathin 3D protein crystals: Atomic model with charges. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 3368–3373. 10.1073/pnas.1500724112. PubMed DOI PMC
Shi D.; Nannenga B. L.; De La Cruz M. J.; Liu J.; Sawtelle S.; Calero G.; Reyes E. F.; Hattne J.; Gonen T. The collection of MicroED data for macromolecular crystallography. Nat. Protoc. 2016, 11, 895–904. 10.1038/nprot.2016.046. PubMed DOI PMC
Clabbers M. T. B.; van Genderen E.; Wan W.; Wiegers E. L.; Gruene T.; Abrahams J. P. Protein structure determination by electron diffraction using a single three-dimensional nanocrystal. Acta Crystallogr. D 2017, 73, 738–748. 10.1107/S2059798317010348. PubMed DOI PMC
de la Cruz M. J.; Hattne J.; Shi D.; Seidler P.; Rodriguez J.; Reyes F. E.; Sawaya M. R.; Cascio D.; Weiss S. C.; Kim S. K.; Hinck C. S.; Hinck A. P.; Calero G.; Eisenberg D.; Gonen T. Atomic-resolution structures from fragmented protein crystals with the cryoEM method MicroED. Nat. Methods 2017, 14, 399–402. 10.1038/nmeth.4178. PubMed DOI PMC
Purdy M. D.; Shi D.; Chrustowicz J.; Hattne J.; Gonen T.; Yeager M. MicroED structures of HIV-1 Gag CTD-SP1 reveal binding interactions with the maturation inhibitor bevirimat. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 13258–13263. 10.1073/pnas.1806806115. PubMed DOI PMC
Xu H.; Lebrette H.; Yang T.; Srinivas V.; Hovmöller S.; Högbom M.; Zou X. A rare lysozyme crystal form solved using highly redundant multiple electron diffraction datasets from micron-sized crystals. Structure 2018, 26, 667–675. 10.1016/j.str.2018.02.015. PubMed DOI
Lanza A.; Margheritis E.; Mugnaioli E.; Cappello V.; Garau G.; Gemmi M. Nanobeam precession-assisted 3D electron diffraction reveals a new polymorph of hen egg-white lysozyme. IUCrJ 2019, 6, 178–188. 10.1107/S2052252518017657. PubMed DOI PMC
Rodriguez J. A.; Ivanova M. I.; Sawaya M. R.; Cascio D.; Reyes F. E.; Shi D.; Sangwan S.; Guenther E. L.; Johnson L. M.; Zhang M.; Jiang L.; Arbing M. A.; Nannenga B. L.; Hattne J.; Whitelegge J.; Brewster A. S.; Messerschmidt M.; Boutet S.; Sauter N. K.; Gonen T.; Eisenberg D. S. Structure of the toxic core of α-synuclein from invisible crystals. Nature 2015, 525, 486–490. 10.1038/nature15368. PubMed DOI PMC
Sawaya M. R.; Rodriguez J.; Cascio D.; Collazo M. J.; Shi D.; Reyes F. E.; Hattne J.; Gonen T.; Eisenberg D. S. Ab initio structure determination from prion nanocrystals at atomic resolution by MicroED. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 11232–11236. 10.1073/pnas.1606287113. PubMed DOI PMC
Gallagher-Jones M.; Glynn C.; Boyer D. R.; Martynowycz M. W.; Hernandez E.; Miao J.; Zee C.-T.; Novikova I. V.; Goldschmidt L.; McFarlane H. T.; Helguera G. F.; Evans J. E.; Sawaya M. R.; Cascio D.; Eisenberg D. S.; Gonen T.; Rodriguez J. A. Sub-ångström cryo-EM structure of a prion protofibril reveals a polar clasp. Nat. Struct. Mol. Biol. 2018, 25, 131–134. 10.1038/s41594-017-0018-0. PubMed DOI PMC
Guenther E. L.; Ge P.; Trinh H.; Sawaya M. R.; Cascio D.; Boyer D. R.; Gonen T.; Zhou Z. H.; Eisenberg D. S. Atomic-level evidence for packing and positional amyloid polymorphism by segment from TDP-43 RRM2. Nat. Struct. Mol. Biol. 2018, 25, 311–319. 10.1038/s41594-018-0045-5. PubMed DOI PMC
Zee C.-T.; Glynn C.; Gallagher-Jones M.; Miao J.; Santiago C. G.; Cascio D.; Gonen T.; Sawaya M. R.; Rodriguez J. A. Homochiral and racemic MicroED structures of a peptide repeat from the ice-nucleation protein InaZ. IUCrJ 2019, 6, 197–205. 10.1107/S2052252518017621. PubMed DOI PMC
Bowden D.; Krysiak Y.; Palatinus L.; Tsivoulas D.; Plana-Ruiz S.; Sarakinou E.; Kolb U.; Stewart D.; Preuss M. A high-strength silicide phase in a stainless steel alloy designed for wear-resistant applications. Nat. Commun. 2018, 9, 1374.10.1038/s41467-018-03875-9. PubMed DOI PMC
Buixaderas E.; Kempa M.; Bovtun V.; Kadlec C.; Savinov M.; Borodavka F.; Vaněk P.; Steciuk G.; Palatinus L.; Dec J. Multiple polarization mechanisms across the ferroelectric phase transition of the tetragonal tungsten-bronze Sr0.35Ba0.69Nb2O6.04. Physical Review Materials 2018, 2, 124402.10.1103/PhysRevMaterials.2.124402. DOI
Cichocka M. O.; Ångström J.; Wang B.; Zou X.; Smeets S. High-throughput continuous rotation electron diffraction data acquisition via software automation. J. Appl. Crystallogr. 2018, 51, 1652–1661. 10.1107/S1600576718015145. PubMed DOI PMC
Cichocka M. O.; Lorgouilloux Y.; Smeets S.; Su J.; Wan W.; Caullet P.; Bats N.; McCusker L. B.; Paillaud J.-L.; Zou X. Multidimensional disorder in zeolite IM-18 revealed by combining transmission electron microscopy and X-ray powder diffraction analyses. Cryst. Growth Des. 2018, 18, 2441–2451. 10.1021/acs.cgd.8b00078. DOI
Das P. P.; Mugnaioli E.; Nicolopoulos S.; Tossi C.; Gemmi M.; Galanis A.; Borodi G.; Pop M. M. Crystal structures of two important pharmaceuticals solved by 3D precession electron diffraction tomography. Org. Process Res. Dev. 2018, 22, 1365–1372. 10.1021/acs.oprd.8b00149. DOI
Hynek J.; Brázda P.; Rohlíček J.; Londesborough M. G. S.; Demel J. Phosphinic acid based linkers: Building blocks in metal–organic framework chemistry. Angew. Chem., Int. Ed. 2018, 57, 5016–5019. 10.1002/anie.201800884. PubMed DOI
Karakulina O. M.; Demortière A.; Dachraoui W.; Abakumov A. M.; Hadermann J. In situ electron diffraction tomography using a liquid-electrochemical transmission electron microscopy cell for crystal structure determination of cathode materials for Li-ion batteries. Nano Lett. 2018, 18, 6286–6291. 10.1021/acs.nanolett.8b02436. PubMed DOI
Krysiak Y.; Barton B.; Marler B.; Neder R. B.; Kolb U. Ab initio structure determination and quantitative disorder analysis on nanoparticles by electron diffraction tomography. Acta Crystallogr., Sect. A: Found. Adv. 2018, 74, 93–101. 10.1107/S2053273317018277. PubMed DOI
Mayorga-Martinez C. C.; Sofer Z.; Luxa J.; Huber Š.; Sedmidubský D.; Brázda P.; Palatinus L.; Mikulics M.; Lazar P.; Medlín R.; Pumera M. TaS3 nanofibers: Layered trichalcogenide for high-performance electronic and sensing devices. ACS Nano 2018, 12, 464–473. 10.1021/acsnano.7b06853. PubMed DOI
Mugnaioli E.; Gemmi M.; Tu R.; David J.; Bertoni G.; Gaspari R.; De Trizio L.; Manna L. Ab initio structure determination of Cu2–xTe plasmonic nanocrystals by precession-assisted electron diffraction tomography and HAADF-STEM imaging. Inorg. Chem. 2018, 57, 10241–10248. 10.1021/acs.inorgchem.8b01445. PubMed DOI
Németh P.; Mugnaioli E.; Gemmi M.; Czuppon G.; Demény A.; Spötl C. A nanocrystalline monoclinic CaCO3 precursor of metastable aragonite. Sci. Adv. 2018, 4, eaau617810.1126/sciadv.aau6178. PubMed DOI PMC
Portolés-Gil N.; Lanza A.; Aliaga-Alcalde N.; Ayllón J. A.; Gemmi M.; Mugnaioli E.; López-Periago A. M.; Domingo C. Crystalline curcumin bioMOF obtained by precipitation in supercritical CO2 and structural determination by electron diffraction tomography. ACS Sustainable Chem. Eng. 2018, 6, 12309–12319. 10.1021/acssuschemeng.8b02738. DOI
Seo S.; Yang T.; Shin J.; Jo D.; Zou X.; Hong S. B. Two aluminophosphate molecular sieves built from pairs of enantiomeric structural building units. Angew. Chem., Int. Ed. 2018, 57, 3727–3732. 10.1002/anie.201800791. PubMed DOI
Steciuk G.; Barrier N.; Pautrat A.; Boullay P. Stairlike Aurivillius Phases in the pseudobinary Bi5Nb3O15–ABi2Nb2O9 (A = Ba and Sr) system: A comprehensive analysis using superspace group formalism. Inorg. Chem. 2018, 57, 3107–3115. 10.1021/acs.inorgchem.7b03026. PubMed DOI
Veis M.; Minár J.; Steciuk G.; Palatinus L.; Rinaldi C.; Cantoni M.; Kriegner D.; Tikuišis K. K.; Hamrle J.; Zahradník M.; Antoš R.; Železný J.; Šmejkal L.; Marti X.; Wadley P.; Campion R. P.; Frontera C.; Uhlířová K.; Duchoň T.; Kužel P.; Novák V.; Jungwirth T.; Výborný K. Band structure of CuMnAs probed by optical and photoemission spectroscopy. Phys. Rev. B: Condens. Matter Mater. Phys. 2018, 97, 125109.10.1103/PhysRevB.97.125109. DOI
Wang B.; Rhauderwiek T.; Inge A. K.; Xu H.; Yang T.; Huang Z.; Stock N.; Zou X. A porous cobalt tetraphosphonate metal–organic framework: Accurate structure and guest molecule location determined by continuous-rotation electron diffraction. Chem. - Eur. J. 2018, 24, 17429–17433. 10.1002/chem.201804133. PubMed DOI
Wiedemann D.; Lüdtke T.; Palatinus L.; Willinger E.; Willinger M. G.; Mühlbauer M. J.; Lerch M. At the Gates: The tantalum-rich phase Hf3Ta2O11 and its commensurately modulated structure. Inorg. Chem. 2018, 57, 14435–14442. 10.1021/acs.inorgchem.8b02642. PubMed DOI
Yuan S.; Qin J.-S.; Xu H.-Q.; Su J.; Rossi D.; Chen Y.; Zhang L.; Lollar C.; Wang Q.; Jiang H.-L.; Son D. H.; Xu H.; Huang Z.; Zou X.; Zhou H.-C. [Ti8Zr2O12(COO)16] cluster: An ideal inorganic building unit for photoactive metal–organic frameworks. ACS Cent. Sci. 2018, 4, 105–111. 10.1021/acscentsci.7b00497. PubMed DOI PMC
Zacharias N.; Karavassili F.; Das P.; Nicolopoulos S.; Oikonomou A.; Galanis A.; Rauch E.; Arenal R.; Portillo J.; Roque J.; Casablanca J.; Margiolaki I. A novelty for cultural heritage material analysis: transmission electron microscope (TEM) 3D electron diffraction tomography applied to Roman glass tesserae. Microchem. J. 2018, 138, 19–25. 10.1016/j.microc.2017.12.023. DOI
Zhang C.; Kapaca E.; Li J.; Liu Y.; Yi X.; Zheng A.; Zou X.; Jiang J.; Yu J. An extra-large-pore zeolite with 24 × 8 × 8-ring channels using a structure-directing agent derived from traditional Chinese medicine. Angew. Chem., Int. Ed. 2018, 57, 6486–6490. 10.1002/anie.201801386. PubMed DOI
Zhou Z.; Qiu Y.; Liang F.; Palatinus L.; Poupon M.; Yang T.; Cong R.; Lin Z.; Sun J. CsSiB3O7: A beryllium-free deep-ultraviolet nonlinear optical material discovered by the combination of electron diffraction and first-principles calculations. Chem. Mater. 2018, 30, 2203–2207. 10.1021/acs.chemmater.8b00545. DOI
Ångström J.; Jenei I. Z.; Spektor K.; Häussermann U. Formation of hydrous, pyroxene-related phases from LiAlSiO4 glass in high-pressure hydrothermal environments. ACS Earth Space Chem. 2019, 3, 8–16. 10.1021/acsearthspacechem.8b00091. DOI
Brázda P.; Palatinus L.; Babor M. Electron diffraction determines molecular absolute configuration in a pharmaceutical nanocrystal. Science 2019, 364, 667–669. 10.1126/science.aaw2560. PubMed DOI
Lanza A. E.; Gemmi M.; Bindi L.; Mugnaioli E.; Paar W. H.. Daliranite, PbHgAs2S5: determination of the incommensurately modulated structure and revision of the chemical formula. Acta Crystallogr. B 2019, in press.10.1107/S2052520619007340. PubMed DOI
Rondeau B.; Devouard B.; Jacob D.; Roussel J.; Stephant N.; Boulet C.; Mollé V.; Corre M.; Fritsch E.; Ferraris C.; Parodi G. C. Lasnierite, (Ca,Sr)(Mg,Fe)2Al(PO4)3, a new phosphate accompanying lazulite from Mt. Ibity, Madagascar: an example of structural characterization from dynamical refinement of precession electron diffraction data on submicrometre sample. Eur. J. Mineral. 2019, 31, 379–388. 10.1127/ejm/2019/0031-2817. DOI
Steciuk G.; David A.; Petricek V.; Palatinus L.; Mercey B.; Prellier W.; Pautrat A.; Boullay P. Precession electron diffraction tomography on twinned crystals: Application to CaTiO3 thin films. J. Appl. Crystallogr. 2019, 52, 626–636. 10.1107/S1600576719005569. DOI
Zou Z.; Habraken W. J. E. M.; Matveeva G.; Jensen A. C. S.; Bertinetti L.; Hood M. A.; Sun C.; Gilbert P. U. P. A.; Polishchuk I.; Pokroy B.; Mahamid J.; Politi Y.; Weiner S.; Werner P.; Bette S.; Dinnebier R.; Kolb U.; Zolotoyabko E.; Fratzl P. A hydrated crystalline calcium carbonate phase: Calcium carbonate hemihydrate. Science 2019, 363, 396–400. 10.1126/science.aav0210. PubMed DOI
Hand E.; Vogel G.; Garber K.; Kaiser J.; Servick K.; Clery D.; Service R. F.; Wadman M. Runners-up. Science 2018, 362, 1346–1351. 10.1126/science.362.6421.1346. PubMed DOI
Gemmi M.; Oleynikov P. Scanning reciprocal space for solving unknown structures: energy filtered diffraction tomography and rotation diffraction tomography methods. Z. Kristallogr. - Cryst. Mater. 2013, 228, 51–58. 10.1524/zkri.2013.1559. DOI
Boullay P.; Palatinus L.; Barrier N. Precession electron diffraction tomography for solving complex modulated structures: The case of Bi5Nb3O15. Inorg. Chem. 2013, 52, 6127–6135. 10.1021/ic400529s. PubMed DOI
Zhang D.; Oleynikov P.; Hovmöller S.; Zou X. Collecting 3D electron diffraction data by the rotation method. Z. Kristallogr. 2010, 225, 94–102. 10.1524/zkri.2010.1202. DOI
Wan W.; Sun J.; Su J.; Hovmöller S.; Zou X. Three-dimensional rotation electron diffraction: software RED for automated data collection and data processing. J. Appl. Crystallogr. 2013, 46, 1863–1873. 10.1107/S0021889813027714. PubMed DOI PMC
Palatinus L.; Chapuis G. SUPERFLIP – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 2007, 40, 786–790. 10.1107/S0021889807029238. DOI
Sheldrick G. M. A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112–122. 10.1107/S0108767307043930. PubMed DOI
Burla M. C.; Caliandro R.; Carrozzini B.; Cascarano G. L.; Cuocci C.; Giacovazzo C.; Mallamo M.; Mazzone A.; Polidori G. Crystal structure determination and refinement via SIR2014. J. Appl. Crystallogr. 2015, 48, 306–309. 10.1107/S1600576715001132. DOI
Grimes J. M.; Hall D. R.; Ashton A. W.; Evans G.; Owen R. L.; Wagner A.; McAuley K. E.; von Delft F.; Orville A. M.; Sorensen T.; Walsh M. A.; Ginn H. M.; Stuart D. I. Where is crystallography going?. Acta Crystallogr. D 2018, 74, 152–166. 10.1107/S2059798317016709. PubMed DOI PMC
Amunts A.; Brown A.; Bai X.-C.; Llácer J. L.; Hussain T.; Emsley P.; Long F.; Murshudov G.; Scheres S. H. W.; Ramakrishnan V. Structure of the yeast mitochondrial large ribosomal subunit. Science 2014, 343, 1485–1489. 10.1126/science.1249410. PubMed DOI PMC
Cheng Y. Single-particle cryo-EM at crystallographic resolution. Cell 2015, 161, 450–457. 10.1016/j.cell.2015.03.049. PubMed DOI PMC
Gemmi M.; La Placa M. G. I.; Galanis A. S.; Rauch E. F.; Nicolopoulos S. Fast electron diffraction tomography. J. Appl. Crystallogr. 2015, 48, 718–727. 10.1107/S1600576715004604. DOI
Vincent R.; Midgley P. A. Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy 1994, 53, 271–282. 10.1016/0304-3991(94)90039-6. DOI
Plana-Ruiz S.; Portillo J.; Estradé S.; Peiró F.; Kolb U.; Nicolopoulos S. Quasi-parallel precession diffraction: Alignment method for scanning transmission electron microscopes. Ultramicroscopy 2018, 193, 39–51. 10.1016/j.ultramic.2018.06.005. PubMed DOI
Gemmi M.; Merlini M.; Palatinus L.; Fumagalli P.; Hanfland M. Electron diffraction determination of 11.5 Å and HySo structures: Candidate water carriers to the Upper Mantle. Am. Am. Mineral. 2016, 101, 2645–2654. 10.2138/am-2016-5722. DOI
Wilke M.; Kabelitz A.; Gorelik T. E.; Guilherme Buzanich A.; Reinholz U.; Kolb U.; Rademann K.; Emmerling F. The crystallisation of copper(II) phenylphosphonates. Dalton T. 2016, 45, 17453–17463. 10.1039/C6DT02904C. PubMed DOI
Rozhdestvenskaya I. V.; Mugnaioli E.; Schowalter M.; Schmidt M. U.; Czank M.; Depmeier W.; Rosenauer A. The structure of denisovite, a fibrous nanocrystalline polytypic disordered ‘very complex’ silicate, studied by a synergistic multi-disciplinary approach employing methods of electron crystallography and X-ray powder diffraction. IUCrJ 2017, 4, 223–242. 10.1107/S2052252517002585. PubMed DOI PMC
Mugnaioli E.; Gemmi M. Single-crystal analysis of nanodomains by electron diffraction tomography: mineralogy at the order-disorder borderline. Z. Kristallogr. - Cryst. Mater. 2018, 233, 163–178. 10.1515/zkri-2017-2130. DOI
Georgieva D.; Jansen J.; Sikharulidze I.; Jiang L.; Zandbergen H. W.; Abrahams J. P. Evaluation of Medipix2 detector for recording electron diffraction data in low dose conditions. J. Instrum. 2011, 6, C01033.10.1088/1748-0221/6/01/C01033. DOI
Kodjikian S.; Klein H. Low-dose electron diffraction tomography (LD-EDT). Ultramicroscopy 2019, 200, 12–19. 10.1016/j.ultramic.2019.02.010. PubMed DOI
Yun Y.; Wan W.; Rabbani F.; Su J.; Xu H.; Hovmöller S.; Johnsson M.; Zou X. Phase identification and structure determination from multiphase crystalline powder samples by rotation electron diffraction. J. Appl. Crystallogr. 2014, 47, 2048–2054. 10.1107/S1600576714023875. DOI
Clabbers M. T. B.; Gruene T.; Parkhurst J. M.; Abrahams J. P.; Waterman D. G. Electron diffraction data processing with DIALS. Acta Cryst. D 2018, 74, 506–518. 10.1107/S2059798318007726. PubMed DOI PMC
Nannenga B. L.; Shi D.; Hattne J.; Reyes F. E.; Gonen T. Structure of catalase determined by MicroED. eLife 2014, 3, e0360010.7554/eLife.03600. PubMed DOI PMC
Palatinus L.; Petříček V.; Antunes Corrêa C. Structure refinement using precession electron diffraction tomography and dynamical diffraction: theory and implementation. Acta Crystallogr., Sect. A: Found. Adv. 2015, 71, 235–244. 10.1107/S2053273315001266. PubMed DOI
Palatinus L.; Corrêa C. A.; Steciuk G.; Jacob D.; Roussel P.; Boullay P.; Klemantová M.; Gemmi M.; Kopeček J.; Domeneghetti M. C.; Cámara F.; Petříček V. Structure refinement using precession electron diffraction tomography and dynamical diffraction: Tests on experimental data. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2015, 71, 740–751. 10.1107/S2052520615017023. PubMed DOI
Hirsch P.; Howie A.; Nicholson R.; Pashley D.; Whelan M.. Electron microscopy of thin crystals; Robert E. Krieger: Malabar, FL, 1977.
Zuo J. M.; Spence J. C. H. Automated structure factor refinement from convergent-beam patterns. Ultramicroscopy 1991, 35, 185–186. 10.1016/0304-3991(91)90071-D. DOI
Palatinus L.; Brázda P.; Boullay P.; Perez O.; Klementová M.; Petit S.; Eigner V.; Zaarour M.; Mintova S. Hydrogen positions in single nanocrystals revealed by electron diffraction. Science 2017, 355, 166–169. 10.1126/science.aak9652. PubMed DOI
Klementová M.; Karlík M.; Novák P.; Palatinus P. Structure determination of a new phase Ni8Ti5 by electron diffraction tomography. Intermetallics 2017, 85, 110–116. 10.1016/j.intermet.2017.02.003. DOI
Gonano B.; Breard Y.; Pelloquin D.; Caignaert V.; Perez O.; Pautrat A.; Boullay P.; Bazin P.; Le Breton J. M. Combining multiscale approaches for the structure determination of an iron layered oxysulfate: Sr4Fe2.5O7.25(SO4)0.5. Inorg. Chem. 2017, 56, 15241–15250. 10.1021/acs.inorgchem.7b02572. PubMed DOI
Klementová M.; Motlochová M.; Boháček J.; Kupčík J.; Palatinus L.; Pližingrová E.; Szatmáry L.; Šubrt J. Metatitanic acid pseudomorphs after titanyl sulfates: nanostructured sorbents and precursors for crystalline titania with desired particle size and shape. Cryst. Growth Des. 2017, 17, 6762–6769. 10.1021/acs.cgd.7b01349. DOI
de la Cruz M. J.; Martynowycz M. W.; Hattne J.; Gonen T. MicroED data collection with SerialEM. Ultramicroscopy 2019, 201, 77–80. 10.1016/j.ultramic.2019.03.009. PubMed DOI PMC
Samuha S.; Mugnaioli E.; Grushko B.; Kolb U.; Meshi L. Atomic structure solution of the complex quasicrystal approximant Al77Rh15Ru8 from electron diffraction data. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2014, 70, 999–1005. 10.1107/S2052520614022033. PubMed DOI
Drozhzhin O. A.; Sumanov V. D.; Karakulina O. M.; Abakumov A. M.; Hadermann J.; Baranov A. N.; Stevenson K. J.; Antipov E. V. Switching between solid solution and two-phase regimes in the Li1-xFe1-yMnyPO4 cathode materials during lithium (de)insertion: combined PITT, in situ XRPD and electron diffraction tomography study Electrochim. Electrochim. Acta 2016, 191, 149–157. 10.1016/j.electacta.2016.01.018. DOI
Feyand M.; Mugnaioli E.; Vermoortele F.; Bueken B.; Dieterich J. M.; Reimer T.; Kolb U.; de Vos D.; Stock N. Automated diffraction tomography for the structure elucidation of twinned, sub-micrometer crystals of a highly porous, catalytically active bismuth metal–organic framework. Angew. Chem., Int. Ed. 2012, 51, 10373–10376. 10.1002/anie.201204963. PubMed DOI
Brázda P.; Palatinus L.; Drahokoupil J.; Knížek K.; Buršík J. Calcium-induced cation ordering and large resistivity decrease in Pr0.3CoO2. J. Phys. Chem. Solids 2016, 96–97, 10–16. 10.1016/j.jpcs.2016.04.012. DOI
Neagu A.; Tai C.-W. Local disorder in Na0.5Bi0.5TiO3-piezoceramic determined by 3D electron diffuse scattering. Sci. Rep. 2017, 7, 12519.10.1038/s41598-017-12801-w. PubMed DOI PMC
Zhao H.; Krysiak Y.; Hoffmann K.; Barton B.; Molina-Luna L.; Neder R. B.; Kleebe H.-J.; Gesing T. M.; Schneider H.; Fischer R. X.; Kolb U. Elucidating structural order and disorder phenomena in mullite-type Al4B2O9 by automated electron diffraction tomography. J. Solid State Chem. 2017, 249, 114–123. 10.1016/j.jssc.2017.02.023. DOI
Willhammar T.; Sentosun K.; Mourdikoudis S.; Goris B.; Kurttepeli M.; Bercx M.; Lamoen D.; Partoens B.; Pastoriza-Santos I.; Pérez-Juste J.; Liz-Marzán L. M.; Bals S.; Van Tendeloo G. Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared. Nat. Commun. 2017, 8, 14925.10.1038/ncomms14925. PubMed DOI PMC
Baraldi A.; Buffagni E.; Capelletti R.; Mazzera M.; Fasoli M.; Lauria A.; Moretti F.; Vedda A.; Gemmi M. Eu incorporation into sol–gel silica for photonic applications: Spectroscopic and TEM evidences of α-quartz and Eu pyrosilicate nanocrystal growth. J. Phys. Chem. C 2013, 117, 26831–26848. 10.1021/jp4101174. DOI
Mayence A.; Wang D.; Salaz-Alvarez G.; Oleynikov P.; Bergström L. Probing planar defects in nanoparticle superlattices by 3D small-angle electron diffraction tomography and real space imaging. Nanoscale 2014, 6, 13803–13808. 10.1039/C4NR04156A. PubMed DOI
Colmont M.; Palatinus L.; Huvé M.; Kabbour H.; Saitzek S.; Djelal N.; Roussel P. On the use of dynamical diffraction theory to refine crystal structure from electron diffraction data: Application to KLa5O5(VO4)2, a material with promising luminescent properties. Inorg. Chem. 2016, 55, 2252–2260. 10.1021/acs.inorgchem.5b02663. PubMed DOI
Lepoittevin C. Structure resolution by electron diffraction tomography of the complex layered iron-rich Fe-2234-type Sr5Fe6O15.4. J. J. Solid State Chem. 2016, 242, 228–235. 10.1016/j.jssc.2016.08.004. DOI
Rickert K.; Boullay P.; Malo S.; Caignaert V.; Poeppelmeier K. R. A rutile chevron modulation in delafossite-like Ga3-xIn3TixO9-x/2. Inorg. Chem. 2016, 55, 4403–4409. 10.1021/acs.inorgchem.6b00147. PubMed DOI
Steciuk G.; Boullay P.; Pautrat A.; Barrier N.; Caignaert V.; Palatinus L. Unusual relaxor ferroelectric behavior in stairlike aurivillius phases. Inorg. Chem. 2016, 55, 8881–8891. 10.1021/acs.inorgchem.6b01373. PubMed DOI
David J.; Rossella F.; Rocci M.; Ercolani D.; Sorba L.; Beltram F.; Gemmi M.; Roddaro S. Crystal phases in hybrid metal–semiconductor nanowire devices. Nano Lett. 2017, 17, 2336–2341. 10.1021/acs.nanolett.6b05223. PubMed DOI
Mugnaioli E.; Gemmi M.; Merlini M.; Gregorkiewitz M. (Na,)5[MnO2]13 nanorods: a new tunnel structure for electrode materials determined ab initio and refined through a combination of electron and synchrotron diffraction data. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2016, 72, 893–903. 10.1107/S2052520616015651. PubMed DOI PMC
Rotella H.; Copie O.; Steciuk G.; Ouerdane H.; Boullay P.; Roussel P.; Morales M.; David A.; Pautrat A.; Mercey B.; Lutterotti L.; Chateigner D.; Prellier W. Structural analysis of strained LaVO3 thin films. J. Phys.: Condens. Matter 2015, 27, 175001.10.1088/0953-8984/27/17/175001. PubMed DOI
Bhat S.; Wiehl L.; Molina-Luna L.; Mugnaioli E.; Lauterbach S.; Sicolo S.; Kroll P.; Duerrschnabel M.; Nishiyama N.; Kolb U.; Albe K.; Kleebe H.-J.; Riedel R. High-pressure synthesis of novel boron oxynitride B6N4O3 with sphalerite type structure. Chem. Mater. 2015, 27, 5907–5914. 10.1021/acs.chemmater.5b01706. DOI
Lepoittevin C.; Jeanneau J.; Toulemonde P.; Sulpice A.; Núñez-Regueiro M. Ba19Cr12O45: A high pressure chromate with an original structure solved by electron diffraction tomography and powder X-ray diffraction. Inorg. Chem. 2017, 56, 6404–6409. 10.1021/acs.inorgchem.7b00481. PubMed DOI
Andrusenko I.; Mugnaioli E.; Gorelik T. E.; Koll D.; Panthöfer M.; Tremel W.; Kolb U. Structure analysis of titanate nanorods by automated electron diffraction tomography. Acta Crystallogr., Sect. B: Struct. Sci. 2011, 67, 218–225. 10.1107/S0108768111014534. PubMed DOI
Weber D.; Huber M.; Gorelik T. E.; Abakumov A. M.; Becker N.; Niehaus O.; Schwickert C.; Culver S. P.; Boysen H.; Senyshyn A.; Pöttgen R.; Dronskowski R.; Ressler T.; Kolb U.; Lerch M. Molybdenum oxide nitrides of the Mo2(O,N,□)5 type: On the way to Mo2O5. Inorg. Chem. 2017, 56, 8782–8792. 10.1021/acs.inorgchem.7b00551. PubMed DOI
Gemmi M.; Campostrini I.; Demartin F.; Gorelik T. E.; Gramaccioli C. M. Structure of the new mineral sarrabusite, Pb5CuCl4(SeO3)4, solved by manual electron-diffraction tomography. Acta Crystallogr., Sect. B: Struct. Sci. 2012, 68, 15–23. 10.1107/S010876811104688X. PubMed DOI
Plášil J.; Palatinus L.; Rohlíček J.; Houdková L.; Klementová M.; Goliáš V.; Škácha P. Crystal structure of lead uranyl carbonate mineral widenmannite: Precession electron-diffraction and synchrotron powder-diffraction study. Am. Mineral. 2014, 99, 276–282. 10.2138/am.2014.4671. DOI
Majzlan J.; Palatinus L.; Plášil J. Crystal structure of Fe2(AsO4)(HAsO4)(OH)(H2O)3, a dehydration product of kaňkite. Eur. J. Mineral. 2016, 28, 63–70. 10.1127/ejm/2015/0027-2495. DOI
Colombo F.; Mugnaioli E.; Vallcorba O.; Garcia A.; Goñi A. R.; Rius J. Crystal structure determination of karibibite, an Fe3+ arsenite, using electron diffraction tomography. Mineral. Mag. 2017, 81, 1191–1202. 10.1180/minmag.2016.080.159. DOI
Capitani G. C.; Mugnaioli E.; Rius J.; Gentile P.; Catelani T.; Lucotti A.; Kolb U. The Bi sulfates from the Alfenza Mine, Crodo, Italy: An automatic electron diffraction tomography (ADT) study. Am. Mineral. 2014, 99, 500–510. 10.2138/am.2014.4446. DOI
Mugnaioli E.; Reyes-Gasga J.; Kolb U.; Hemmerlé J.; Brès É. F. Evidence of noncentrosymmetry of human tooth hydroxyapatite crystals. Chem. - Eur. J. 2014, 20, 6849–6852. 10.1002/chem.201402275. PubMed DOI
Capitani G. C.; Mugnaioli E.; Guastoni A. What is the actual structure of samarskite-(Y)? A TEM investigation of metamict samarskite from the Garnet Codera dike pegmatite (Central Italian Alps). Am. Mineral. 2016, 101, 1679–1690. 10.2138/am-2016-5605. DOI
Mugnaioli E.; Andrusenko I.; Schüler T.; Loges N.; Dinnebier R. E.; Panthöfer M.; Tremel W.; Kolb U. Ab initio structure determination of vaterite by automated electron diffraction. Angew. Chem., Int. Ed. 2012, 51, 7041–7045. 10.1002/anie.201200845. PubMed DOI
Pignatelli I.; Marrocchi Y.; Mugnaioli E.; Bourdelle F.; Gounelle M. Mineralogical, crystallographic and redox features of the earliest stages of fluid alteration in CM chondrites. Geochim. Cosmochim. Acta 2017, 209, 106–122. 10.1016/j.gca.2017.04.017. DOI
Viti C.; Brogi A.; Liotta D.; Mugnaioli E.; Spiess R.; Dini A.; Zucchi M.; Vannuccini G. Seismic slip recorded in tourmaline fault mirrors from Elba Island (Italy). J. Struct. Geol. 2016, 86, 1–12. 10.1016/j.jsg.2016.02.013. DOI
Gemmi M.; Fischer J.; Merlini M.; Poli S.; Fumagalli P.; Mugnaioli E.; Kolb U. A new hydrous Al-bearing pyroxene as a water carrier in subduction zones. Earth Planet. Sci. Lett. 2011, 310, 422–428. 10.1016/j.epsl.2011.08.019. DOI
Pignatelli I.; Mugnaioli E.; Hybler J.; Mosser-Ruck R.; Cathelineau M.; Michau N. A multi-technique characterization of cronstedtite synthesized by iron-clay interaction in a step-by-step cooling procedure. Clays Clay Miner. 2013, 61, 277–289. 10.1346/CCMN.2013.0610408. DOI
Koch-Müller M.; Mugnaioli E.; Rhede D.; Speziale S.; Kolb U.; Wirth R. Synthesis of a quenchable high-pressure form of magnetite (h-Fe3O4) with composition Fe1(Fe2+0.75Mg0.26)Fe2(Fe3+0.70Cr0.15Al0.11Si0.04)2O4. Am. Mineral. 2014, 99, 2405–2415. 10.2138/am-2014-4944. DOI
Willhammar T.; Burton A. W.; Yun Y.; Sun J.; Afeworki M.; Strohmaier K. G.; Vroman H.; Zou X. EMM-23: A stable high-silica multidimensional zeolite with extra-large trilobe-shaped channels. J. Am. Chem. Soc. 2014, 136, 13570–13573. 10.1021/ja507615b. PubMed DOI
Jiang J.; Yun Y.; Zou X.; Jorda J. L.; Corma A. ITQ-54: a multi-dimensional extra-large pore zeolite with 20 × 14 × 12-ring channels. Chem. Sci. 2015, 6, 480–485. 10.1039/C4SC02577F. PubMed DOI PMC
Simancas J.; Simancas R.; Bereciartua P. J.; Jorda J. L.; Rey F.; Corma A.; Nicolopoulos S.; Das P. P.; Gemmi M.; Mugnaioli E. Ultrafast electron diffraction tomography for structure determination of the new zeolite ITQ-58. J. Am. Chem. Soc. 2016, 138, 10116–10119. 10.1021/jacs.6b06394. PubMed DOI PMC
Willhammar T.; Su J.; Yun Y.; Zou X.; Afeworki M.; Weston S. C.; Vroman H. B.; Lonergan W. W.; Strohmaier K. G. High-throughput synthesis and structure of zeolite ZSM-43 with two-directional 8-ring channels. Inorg. Chem. 2017, 56, 8856–8864. 10.1021/acs.inorgchem.7b00752. PubMed DOI
Rius J.; Mugnaioli E.; Vallcorba O.; Kolb U. Application of δ recycling to electron automated diffraction tomography data from inorganic crystalline nanovolumes. Acta Crystallogr., Sect. A: Found. Crystallogr. 2013, 69, 396–407. 10.1107/S0108767313009549. PubMed DOI
Zhang Y.-B.; Su J.; Furukawa H.; Yun Y.; Gándara F.; Duong A.; Zou X.; Yaghi O. M. Single-crystal structure of a covalent organic framework. J. Am. Chem. Soc. 2013, 135, 16336–16339. 10.1021/ja409033p. PubMed DOI
Bellussi G.; Montanari E.; Di Paola E.; Millini R.; Carati A.; Rizzo C.; O’Neil Parker W. Jr.; Gemmi M.; Mugnaioli E.; Kolb U.; Zanardi S. ECS-3: a crystalline hybrid organic–inorganic aluminosilicate with open porosity. Angew. Chem., Int. Ed. 2012, 51, 666–669. 10.1002/anie.201105496. PubMed DOI
Janssen T.; Chapuis G.; de Boissieu M.. Aperiodic Crystals: from modulated phases to quasicrystals; Oxford University Press: New York, 2007.
van Smaalen S.Incommensurate crystallography; Oxford University Press: New York, 2007.
Li L.; Boullay P.; Lu P.; Wang X.; Jian J.; Huang J.; Gao X.; Misra S.; Zhang W.; Perez O.; Steciuk G.; Chen A.; Zhang X.; Wang H. Novel layered supercell structure from Bi2AlMnO6 for multifunctionalities. Nano Lett. 2017, 17, 6575–6582. 10.1021/acs.nanolett.7b02284. PubMed DOI
Singh D.; Yun Y.; Wan W.; Grushko B.; Zou X.; Hovmöller S. A complex pseudo-decagonal quasicrystal approximant, Al37(Co,Ni)15.5, solved by rotation electron diffraction. J. Appl. Crystallogr. 2014, 47, 215–221. 10.1107/S1600576713029294. DOI
Henderson R.; Baldwin J. M.; Ceska T. A.; Zemlin F.; Beckmann E.; Downing K. H. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 1990, 213, 899–929. 10.1016/S0022-2836(05)80271-2. PubMed DOI
Kühlbrandt W.; Wang D. N.; Fujiyoshi Y. Atomic model of plant light-harvesting complex by electron crystallography. Nature 1994, 367, 614–621. 10.1038/367614a0. PubMed DOI
Grigorieff N.; Ceska T. A.; Downing K. H.; Baldwin J. M.; Henderson R. Electron-crystallographic refinement of the structure of bacteriorhodopsin. J. Mol. Biol. 1996, 259, 393–421. 10.1006/jmbi.1996.0328. PubMed DOI
Henderson R.; Unwin N. T. Three-dimensional model of purple membrane obtained by electron microscopy. Nature 1975, 257, 28–32. 10.1038/257028a0. PubMed DOI
Glaeser R. M.; Downing K. H. High-resolution electron crystallography of protein molecules. Ultramicroscopy 1993, 52, 478–486. 10.1016/0304-3991(93)90064-5. PubMed DOI
Subramanian G.; Basu S.; Liu H.; Zuo J. M.; Spence J. C. H. Solving protein nanocrystals by cryo-EM diffraction: multiple scattering artifacts. Ultramicroscopy 2015, 148, 87–93. 10.1016/j.ultramic.2014.08.013. PubMed DOI
Clabbers M. T. B.; Abrahams J. P. Electron diffraction and three-dimensional crystallography for structural biology. Crystallogr. Rev. 2018, 24, 176–204. 10.1080/0889311X.2018.1446427. DOI
Henderson R. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy and unstained biological molecules. Q. Rev. Biophys. 1995, 28, 171–193. 10.1017/S003358350000305X. PubMed DOI
Martin D. C.; Chen J.; Yang J.; Drummy L. F.; Kübel C. High resolution electron microscopy of ordered polymers and organic molecular crystals: Recent developments and future possibilities. J. Polym. Sci., Part B: Polym. Phys. 2005, 43, 1749–1778. 10.1002/polb.20419. DOI
Kolb U.; Gorelik T. E.; Mugnaioli E.; Stewart A. Structural characterization of organics using manual and automated electron diffraction. Polym. Rev. 2010, 50, 385–409. 10.1080/15583724.2010.494238. DOI
Li X.; Mooney P.; Zheng S.; Booth C. R.; Braunfeld M. B.; Gubbens S.; Agard D. A.; Cheng Y. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods 2013, 10, 584–590. 10.1038/nmeth.2472. PubMed DOI PMC
Llopart X.; Campbell M.; Dinapoli R.; San Segundo D.; Pernigotti E. Medipix2: A 64-k pixel readout chip with 55 μm square elements working in single photon counting mode. IEEE Trans. Nucl. Sci. 2002, 49, 2279–2283. 10.1109/TNS.2002.803788. DOI
Jiang L.; Georgieva D.; Nederlof I.; Liu Z.; Abrahams J. P. Image processing and lattice determination for three-dimensional nanocrystals. Microsc. Microanal. 2011, 17, 879–885. 10.1017/S1431927611012244. PubMed DOI
Smeets S.; Wan W. Serial electron crystallography: merging diffraction data through rank aggregation. J. Appl. Crystallogr. 2017, 50, 885–892. 10.1107/S1600576717005854. DOI
Arndt U. W.; Wonacott A. J.. The rotation method in crystallography; Elsevier/North-Holland: Amsterdam, 1977.
Trampari S.; Valmas A.; Logotheti S.; Saslis S.; Fili S.; Spiliopoulou M.; Beckers D.; Degen T.; Nenert G.; Fitch A. N.; Calamiotou M.; Karavassili F.; Margiolaki I. J. J. Appl. Crystallogr. 2018, 51, 1671–1683. 10.1107/S1600576718013936. DOI
Ionisation of atoms determined by kappa refinement against 3D electron diffraction data
Applying 3D ED/MicroED workflows toward the next frontiers
Dynamical refinement with multipolar electron scattering factors
ROY Crystallization on Poly(ethylene) Fibers, a Model for Bed Net Crystallography
Quantitative three-dimensional local order analysis of nanomaterials through electron diffraction
Catching a New Zeolite as a Transition Material during Deconstruction
Massive Accumulation of Strontium and Barium in Diplonemid Protists
Accurate lattice parameters from 3D electron diffraction data. I. Optical distortions
Design of metastable oxychalcogenide phases by topochemical (de)intercalation of sulfur in La2O2S2
A new electron diffraction approach for structure refinement applied to Ca3Mn2O7
Exotic Compositional Ordering in Manganese-Nickel-Arsenic (Mn-Ni-As) Intermetallics