Structure and absolute configuration of natural fungal product beauveriolide I, isolated from Cordyceps javanica, determined by 3D electron diffraction
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
21-05926X
Grantov Agentura Česk Republiky
SS0102045
Technologick Agentura Česk Republiky
LM2023051
Ministry of Education, Youth and Sports
PubMed
38411548
PubMed Central
PMC10913083
DOI
10.1107/s2053229624001359
PII: S2053229624001359
Knihovny.cz E-zdroje
- Klíčová slova
- 3D electron diffraction, Alzheimer's disease, absolute structure, crystal structure, natural product,
- MeSH
- biologické přípravky * MeSH
- Cordyceps * MeSH
- elektrony MeSH
- krystalografie rentgenová MeSH
- vodíková vazba MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické přípravky * MeSH
Beauveriolides, including the main beauveriolide I {systematic name: (3R,6S,9S,13S)-9-benzyl-13-[(2S)-hexan-2-yl]-6-methyl-3-(2-methylpropyl)-1-oxa-4,7,10-triazacyclotridecane-2,5,8,11-tetrone, C27H41N3O5}, are a series of cyclodepsipeptides that have shown promising results in the treatment of Alzheimer's disease and in the prevention of foam cell formation in atherosclerosis. Their crystal structure studies have been difficult due to their tiny crystal size and fibre-like morphology, until now. Recent developments in 3D electron diffraction methodology have made it possible to accurately study the crystal structures of submicron crystals by overcoming the problems of beam sensitivity and dynamical scattering. In this study, the absolute structure of beauveriolide I was determined by 3D electron diffraction. The cyclodepsipeptide crystallizes in the space group I2 with lattice parameters a = 40.2744 (4), b = 5.0976 (5), c = 27.698 (4) Å and β = 105.729 (6)°. After dynamical refinement, its absolute structure was determined by comparing the R factors and calculating the z-scores of the two possible enantiomorphs of beauveriolide I.
Zobrazit více v PubMed
Brázda, P., Palatinus, L. & Babor, M. (2019). Science, 364, 667–669. PubMed
Elsworth, J. F. & Grove, J. F. (1977). J. Chem. Soc. Perkin Trans. 1, pp. 270–273. PubMed
Gemmi, M., Mugnaioli, E., Gorelik, T. E., Kolb, U., Palatinus, L., Boullay, P., Hovmöller, S. & Abrahams, J. P. (2019). ACS Cent. Sci. 5, 1315–1329. PubMed PMC
Hardy, J. & Selkoe, D. J. (2002). Science, 297, 353–356. PubMed
Heneberg, P., Jegorov, A. & Šimek, P. (2020). CyTA J. Food, 18, 644–652.
Huttunen, H. J., Greco, C. & Kovacs, D. M. (2007). FEBS Lett. 581, 1688–1692. PubMed PMC
Kadlec, Z., Šimek, P., Heydová, A., Jegorov, A., Maťha, V., Landa, Z. & Eyal, J. (1994). Biochem. Syst. Ecol. 22, 803–806.
Klar, P. B., Krysiak, Y., Xu, H., Steciuk, G., Cho, J., Zou, X. & Palatinus, L. (2023). Nat. Chem. 15, 848–855. PubMed PMC
Mochizuki, K., Ohmori, K., Tamura, H., Shizuri, Y., Nishiyama, S., Miyoshi, E. & Yamamura, S. (1993). Bull. Chem. Soc. Jpn, 66, 3041–3046.
Momma, K. & Izumi, F. (2008). J. Appl. Cryst. 41, 653–658.
Nagai, K., Doi, T., Ohshiro, T., Sunazuka, T., Tomoda, H., Takahashi, T. & Ōmura, S. (2008). Bioorg. Med. Chem. Lett. 18, 4397–4400. PubMed
Namatame, I., Tomoda, H., Ishibashi, S. & Ōmura, S. (2004). Proc. Natl Acad. Sci. USA, 101, 737–742. PubMed PMC
Palatinus, L., Brázda, P., Jelínek, M., Hrdá, J., Steciuk, G. & Klementová, M. (2019). Acta Cryst. B75, 512–522. PubMed
Palatinus, L., Petříček, V. & Corrêa, C. A. (2015). Acta Cryst. A71, 235–244. PubMed
Petříček, V., Palatinus, L., Plášil, J. & Dušek, M. (2023). Z. Kristallogr. Cryst. Mater. 238, 271–282.
Puglielli, L., Konopka, G., Pack-Chung, E., Ingano, L. A., Berezovska, O., Hyman, B. T., Chang, T. Y., Tanzi, R. E. & Kovacs, D. M. (2001). Nat. Cell Biol. 3, 905–912. PubMed
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
Spence, J. C. H., Zuo, J. M., O’Keeffe, M., Marthinsen, K. & Hoier, R. (1994). Acta Cryst. A50, 647–650.
Tomoda, H. & Doi, T. (2008). Acc. Chem. Res. 41, 32–39. PubMed