Accurate structure models and absolute configuration determination using dynamical effects in continuous-rotation 3D electron diffraction data
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
2017-05333
Vetenskapsrådet (Swedish Research Council)
2017-04321
Vetenskapsrådet (Swedish Research Council)
2019-00815
Vetenskapsrådet (Swedish Research Council)
2012.0112
Knut och Alice Wallenbergs Stiftelse (Knut and Alice Wallenberg Foundation)
2018.0237
Knut och Alice Wallenbergs Stiftelse (Knut and Alice Wallenberg Foundation)
19-08032S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
21-05926X
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
PubMed
37081207
PubMed Central
PMC10239730
DOI
10.1038/s41557-023-01186-1
PII: 10.1038/s41557-023-01186-1
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Continuous-rotation 3D electron diffraction methods are increasingly popular for the structure analysis of very small organic molecular crystals and crystalline inorganic materials. Dynamical diffraction effects cause non-linear deviations from kinematical intensities that present issues in structure analysis. Here, a method for structure analysis of continuous-rotation 3D electron diffraction data is presented that takes multiple scattering effects into account. Dynamical and kinematical refinements of 12 compounds-ranging from small organic compounds to metal-organic frameworks to inorganic materials-are compared, for which the new approach yields significantly improved models in terms of accuracy and reliability with up to fourfold reduction of the noise level in difference Fourier maps. The intrinsic sensitivity of dynamical diffraction to the absolute structure is also used to assign the handedness of 58 crystals of 9 different chiral compounds, showing that 3D electron diffraction is a reliable tool for the routine determination of absolute structures.
Department of Geosciences University of Bremen Bremen Germany
Department of Materials and Environmental Chemistry Stockholm University Stockholm Sweden
Institute of Inorganic Chemistry Leibniz University Hannover Hannover Germany
Institute of Physics Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Sheldrick GM. A short history of SHELX. Acta Crystallogr. A. 2008;64:112–122. doi: 10.1107/S0108767307043930. PubMed DOI
Mugnaioli E, Gorelik T, Kolb U. ‘Ab initio’ structure solution from electron diffraction data obtained by a combination of automated diffraction tomography and precession technique. Ultramicroscopy. 2009;109:758–765. doi: 10.1016/j.ultramic.2009.01.011. PubMed DOI
Palatinus L, et al. Specifics of the data processing of precession electron diffraction tomography data and their implementation in the program PETS2.0. Acta Crystallogr. B. 2019;75:512–522. doi: 10.1107/S2052520619007534. PubMed DOI
Gruene, T., Holstein, J. J., Clever, G. H. & Keppler, B. Establishing electron diffraction in chemical crystallography. Nat. Rev. Chem.5, 660–668 (2021). PubMed
Gemmi M, et al. 3D electron diffraction: the nanocrystallography revolution. ACS Central Sci. 2019;5:1315–1329. doi: 10.1021/acscentsci.9b00394. PubMed DOI PMC
Prince, E. International Tables for Crystallography Volume C: Mathematical, Physical and Chemical Tables (International Union of Crystallography, 2006); 10.1107/97809553602060000103
Bethe, H. Theorie der Beugung von Elektronen an Kristallen. Ann. Phys.392, 55–129 (1928).
Zuo, J. M. & Spence, J. C. H. Electron Microdiffraction (Springer, 1992).
Own CS, Marks LD, Sinkler W. Precession electron diffraction 1: multislice simulation. Acta Crystallogr. A. 2006;62:434–443. doi: 10.1107/S0108767306032892. PubMed DOI
Oleynikov P, Hovmöller S, Zou X. Precession electron diffraction: observed and calculated intensities. Ultramicroscopy. 2007;107:523–533. doi: 10.1016/j.ultramic.2006.04.032. PubMed DOI
Spence JCH, Zuo JM, O’Keeffe M, Marthinsen K, Hoier R. On the minimum number of beams needed to distinguish enantiomorphs in X-ray and electron diffraction. Acta Crystallogr. A. 1994;50:647–650. doi: 10.1107/S0108767394002850. DOI
Inui H, Fujii A, Tanaka K, Sakamoto H, Ishizuka K. New electron diffraction method to identify the chirality of enantiomorphic crystals. Acta Crystallogr. B. 2003;59:802–810. doi: 10.1107/S010876810302411X. PubMed DOI
Ma Y, Oleynikov P, Terasaki O. Electron crystallography for determining the handedness of a chiral zeolite nanocrystal. Nat. Mater. 2017;16:755–759. doi: 10.1038/nmat4890. PubMed DOI
Brazda P, Palatinus L, Babor M. Electron diffraction determines molecular absolute configuration in a pharmaceutical nanocrystal. Science. 2019;364:667–669. doi: 10.1126/science.aaw2560. PubMed DOI
Palatinus L, Petříček V, Corrêa CA. Structure refinement using precession electron diffraction tomography and dynamical diffraction: theory and implementation. Acta Crystallogr. A. 2015;71:235–244. doi: 10.1107/S2053273315001266. PubMed DOI
Wang B, et al. A porous cobalt tetraphosphonate metal-organic framework: accurate structure and guest molecule location determined by continuous-rotation electron diffraction. Chemistry. 2018;24:17429–17433. doi: 10.1002/chem.201804133. PubMed DOI
Rojas A, Arteaga O, Kahr B, Camblor MA. Synthesis, structure, and optical activity of HPM-1, a pure silica chiral zeolite. J. Am. Chem. Soc. 2013;135:11975–11984. doi: 10.1021/ja405088c. PubMed DOI
Tang L, et al. A zeolite family with chiral and achiral structures built from the same building layer. Nat. Mater. 2008;7:381–385. doi: 10.1038/nmat2169. PubMed DOI
Frojdh, E. et al. Discrimination of aluminum from silicon by electron crystallography with the JUNGFRAU detector. Crystals10, 1148 (2020).
Nakane T, et al. Single-particle cryo-EM at atomic resolution. Nature. 2020;587:152–156. doi: 10.1038/s41586-020-2829-0. PubMed DOI PMC
Gruza B, Chodkiewicz ML, Krzeszczakowska J, Dominiak PM. Refinement of organic crystal structures with multipolar electron scattering factors. Acta Crystallogr. A. 2020;76:92–109. doi: 10.1107/S2053273319015304. PubMed DOI PMC
Wang B, et al. Absolute configuration determination of pharmaceutical crystalline powders by MicroED via chiral salt formation. Chem. Commun. 2022;58:4711–4714. doi: 10.1039/D2CC00221C. PubMed DOI PMC
Le Page Y, Gabe EJ, Gainsford GJ. A robust alternative to η refinement for assessing the hand of chiral compounds. J. Appl. Cryst. 1990;23:406–411. doi: 10.1107/S0021889890005775. DOI
Broadhurst ET, et al. Polymorph evolution during crystal growth studied by 3D electron diffraction. IUCrJ. 2020;7:5–9. doi: 10.1107/S2052252519016105. PubMed DOI PMC
Dong Z, Ma Y. Atomic-level handedness determination of chiral crystals using aberration-corrected scanning transmission electron microscopy. Nat. Commun. 2020;11:1588. doi: 10.1038/s41467-020-15388-5. PubMed DOI PMC
Gruene T, et al. Rapid structure determination of microcrystalline molecular compounds using electron diffraction. Angew. Chem. Int. Ed. 2018;57:16313–16317. doi: 10.1002/anie.201811318. PubMed DOI PMC
Gemmi M, La Placa MGI, Galanis AS, Rauch EF, Nicolopoulos S. Fast electron diffraction tomography. J. Appl. Crystallogr. 2015;48:718–727. doi: 10.1107/S1600576715004604. DOI
Parsons S, Flack HD, Wagner T. Use of intensity quotients and differences in absolute structure refinement. Acta Crystallogr. B. 2013;69:249–259. doi: 10.1107/S2052519213010014. PubMed DOI PMC
Escudero-Adán EC, Benet-Buchholz J, Ballester P. The use of Mo Kα radiation in the assignment of the absolute configuration of light-atom molecules; the importance of high-resolution data. Acta Crystallogr. B. 2014;70:660–668. doi: 10.1107/S2052520614014498. PubMed DOI
Latychevskaia T, Abrahams JP. Inelastic scattering and solvent scattering reduce dynamical diffraction in biological crystals. Acta Crystallogr. B. 2019;75:523–531. doi: 10.1107/S2052520619009661. PubMed DOI PMC
Cichocka MO, Angstrom J, Wang B, Zou X, Smeets S. High-throughput continuous rotation electron diffraction data acquisition via software automation. J. Appl. Crystallogr. 2018;51:1652–1661. doi: 10.1107/S1600576718015145. PubMed DOI PMC
Jones CG, et al. The CryoEM method MicroED as a powerful tool for small molecule structure determination. ACS Cent. Sci. 2018;4:1587–1592. doi: 10.1021/acscentsci.8b00760. PubMed DOI PMC
Allen FH, Bruno IJ. Bond lengths in organic and metal-organic compounds revisited: X-H bond lengths from neutron diffraction data. Acta Crystallogr. B. 2010;66:380–386. doi: 10.1107/S0108768110012048. PubMed DOI
Yanagisawa, H., Yamashita, K., Nureki, O. & Kikkawa, M. MicroED datasets of hemin and biotin collected on Ceta camera. Zenodo10.5281/zenodo.3366892 (2019).
Thompson, E. & Jenkins, H. T. 3DED/microED datasets of biotin (Glacios/Ceta-D). Zenodo10.5281/zenodo.4895412 (2021).
Bruhn JF, et al. Small molecule microcrystal electron diffraction for the pharmaceutical industry–lessons learned from examining over fifty samples. Front. Mol. Biosci. 2021;8:354. doi: 10.3389/fmolb.2021.648603. PubMed DOI PMC
Pastero L, Turci F, Leinardi R, Pavan C, Monopoli M. Synthesis of α-quartz with controlled properties for the investigation of the molecular determinants in silica toxicology. Cryst. Growth Des. 2016;16:2394–2403. doi: 10.1021/acs.cgd.6b00183. DOI
Palatinus L, et al. Hydrogen positions in single nanocrystals revealed by electron diffraction. Science. 2017;355:166–169. doi: 10.1126/science.aak9652. PubMed DOI
Zaarour M, et al. Synthesis of new cobalt aluminophosphate framework by opening a cobalt methylphosphonate layered material. CrystEngComm. 2017;19:5100–5105. doi: 10.1039/C7CE01129F. DOI
Zhou H, et al. Programming conventional electron microscopes for solving ultrahigh-resolution structures of small and macro-molecules. Anal. Chem. 2019;91:10996–11003. doi: 10.1021/acs.analchem.9b01162. PubMed DOI
Plana-Ruiz S, et al. Fast-ADT: a fast and automated electron diffraction tomography setup for structure determination and refinement. Ultramicroscopy. 2020;211:112951. doi: 10.1016/j.ultramic.2020.112951. PubMed DOI
Roslova M, et al. InsteaDMatic: towards cross-platform automated continuous rotation electron diffraction. J. Appl. Crystallogr. 2020;53:1217–1224. doi: 10.1107/S1600576720009590. PubMed DOI PMC
Bortolini, C. et al. Atomic structure of amyloid crystals. Zenodo10.5281/zenodo.5303223 (2022).
Clabbers MTB, Gruene T, van Genderen E, Abrahams JP. Reducing dynamical electron scattering reveals hydrogen atoms. Acta Crystallogr. A. 2019;75:82–93. doi: 10.1107/S2053273318013918. PubMed DOI PMC
Knudsen EB, Sørensen HO, Wright JP, Goret G, Kieffer J. FabIO: easy access to two-dimensional X-ray detector images in Python. J. Appl. Cryst. 2013;46:537–539. doi: 10.1107/S0021889813000150. DOI
Palatinus L, Chapuis G. SUPERFLIP – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Cryst. 2007;40:786–790. doi: 10.1107/S0021889807029238. DOI
Petříček V, Dušek M, Palatinus L. Crystallographic computing system JANA2006: general features. Z. Kristallogr. Cryst. Mater. 2014;229:345–352. doi: 10.1515/zkri-2014-1737. DOI
Palatinus L, et al. Structure refinement using precession electron diffraction tomography and dynamical diffraction: tests on experimental data. Acta Crystallogr. B. 2015;71:740–751. doi: 10.1107/S2052520615017023. PubMed DOI
Palatinus L, et al. Structure refinement from precession electron diffraction data. Acta Crystallogr. A. 2013;69:171–188. doi: 10.1107/S010876731204946X. PubMed DOI
Klar, P. B. et al. Data for accurate structure models and absolute configuration determination using dynamical effects in continuous-rotation 3D ED data. Zenodo10.5281/zenodo.5579792 (2021). PubMed PMC
Ionisation of atoms determined by kappa refinement against 3D electron diffraction data
Applying 3D ED/MicroED workflows toward the next frontiers
Absolute structure determination of Berkecoumarin by X-ray and electron diffraction
Chlorfenapyr Crystal Polymorphism and Insecticidal Activity
Quantitative three-dimensional local order analysis of nanomaterials through electron diffraction