Unveiling the topology of partially disordered micro-crystalline nitro-perylenediimide with X-aggregate stacking: an integrated approach
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38179523
PubMed Central
PMC10762722
DOI
10.1039/d3sc05514k
PII: d3sc05514k
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Profound knowledge of the molecular structure and supramolecular organization of organic molecules is essential to understand their structure-property relationships. Herein we demonstrate the packing arrangement of partially disordered nitro-perylenediimide (NO2-PDI), revealing that the perylenediimide units exhibit an X-shaped packing pattern. The packing of NO2-PDI is derived using a complementary approach that utilises solid-state NMR (ssNMR) and 3D electron diffraction (3D ED) techniques. Perylenediimide (PDI) molecules are captivating due to their high luminescence efficiency and optoelectronic properties, which are related to supramolecular self-assembly. Increasing the alkyl chain length on the imide substituent poses a more significant challenge in crystallizing the resulting molecule. In addition to the alkyl tails, other functional groups, like the nitro group attached as a bay substituent, can also cause disorder. Such heterogeneity could lead to diffuse scattering, which then complicates the interpretation of diffraction experiment data, where perfect periodicity is expected. As a result, there is an unmet need to develop a methodology for solving the structures of difficult-to-crystallize materials. A synergistic approach is utilised in this manuscript to understand the packing arrangement of the disordered material NO2-PDI by making use of 3D ED, ssNMR and density functional theory calculations (DFT). The combination of these experimental and theoretical approaches provides great promise in enabling the structural investigation of novel materials with customized properties across various applications, which are, due to the internal disorder, very difficult to study by diffraction techniques. By effectively addressing these challenges, our methodology opens up new avenues for material characterization, thereby driving exciting advancements in the field.
Zobrazit více v PubMed
Bouwens T. Bakker T. M. A. Zhu K. Hasenack J. Dieperink M. Brouwer A. M. Huijser A. Mathew S. Reek J. N. H. Nat. Chem. 2023;15:213–221. doi: 10.1038/s41557-022-01068-y. PubMed DOI
Lehn J.-M. Science. 1993;260:1762–1763. doi: 10.1126/science.8511582. PubMed DOI
Bialas D. Kirchner E. Röhr M. I. S. Würthner F. J. Am. Chem. Soc. 2021;143:4500–4518. doi: 10.1021/jacs.0c13245. PubMed DOI
Harris K. D. M. Tremayne M. Chem. Mater. 1996;8:2554–2570. doi: 10.1021/cm960218d. DOI
Deringer V. L. Bernstein N. Csányi G. Ben Mahmoud C. Ceriotti M. Wilson M. Drabold D. A. Elliott S. R. Nature. 2021;589:59–64. doi: 10.1038/s41586-020-03072-z. PubMed DOI
Sivaraman G. Krishnamoorthy A. N. Baur M. Holm C. Stan M. Csányi G. Benmore C. Vázquez-Mayagoitia Á. npj Comput. Mater. 2020;6:104. doi: 10.1038/s41524-020-00367-7. DOI
Woodley S. M. Catlow R. Nat. Mater. 2008;7:937–946. doi: 10.1038/nmat2321. PubMed DOI
Hoja J. Ko H.-Y. Neumann M. A. Car R. DiStasio R. A. Tkatchenko A. Sci. Adv. 2023;5:eaau3338. doi: 10.1126/sciadv.aau3338. PubMed DOI PMC
Kaufmann C. Bialas D. Stolte M. Würthner F. J. Am. Chem. Soc. 2018;140:9986–9995. doi: 10.1021/jacs.8b05490. PubMed DOI
Briseno A. L. Mannsfeld S. C. B. Reese C. Hancock J. M. Xiong Y. Jenekhe S. A. Bao Z. Xia Y. Nano Lett. 2007;7:2847–2853. doi: 10.1021/nl071495u. PubMed DOI
Li G. Zhao Y. Li J. Cao J. Zhu J. Sun X. W. Zhang Q. J. Org. Chem. 2015;80:196–203. doi: 10.1021/jo502296z. PubMed DOI
Zhang F. Ma Y. Chi Y. Yu H. Li Y. Jiang T. Wei X. Shi J. Sci. Rep. 2018;8:8208. doi: 10.1038/s41598-018-26502-5. PubMed DOI PMC
Zhou W. Liu G. Yang B. Ji Q. Xiang W. He H. Xu Z. Qi C. Li S. Yang S. Xu C. Sci. Total Environ. 2021;780:146483. doi: 10.1016/j.scitotenv.2021.146483. PubMed DOI
Li H. Giri G. Tok J. B.-H. Bao Z. MRS Bull. 2013;38:34–42. doi: 10.1557/mrs.2012.309. DOI
Li J. Qin Z. Sun Y. Zhen Y. Liu J. Zou Y. Li C. Lu X. Jiang L. Zhang X. Ji D. Li L. Dong H. Hu W. Angew. Chem., Int. Ed. 2022;61:e202206825. doi: 10.1002/anie.202206825. PubMed DOI
Karaush-Karmazin N. N. Baryshnikov G. V. Kuklin A. V. Saykova D. I. Ågren H. Minaev B. F. J. Mater. Chem. C. 2021;9:1451–1466. doi: 10.1039/D0TC03674A. DOI
Huang L. Y. Ai Q. Risko C. J. Chem. Phys. 2022;157:84703. doi: 10.1063/5.0097421. PubMed DOI
Sebastian E. Hariharan M. J. Am. Chem. Soc. 2021;143:13769–13781. doi: 10.1021/jacs.1c05793. PubMed DOI
Mazumder A. Sebastian E. Hariharan M. Chem. Sci. 2022;13:8860–8870. doi: 10.1039/D2SC02979K. PubMed DOI PMC
Rosenne S. Grinvald E. Shirman E. Neeman L. Dutta S. Bar-Elli O. Ben-Zvi R. Oksenberg E. Milko P. Kalchenko V. Weissman H. Oron D. Rybtchinski B. Nano Lett. 2015;15:7232–7237. doi: 10.1021/acs.nanolett.5b02010. PubMed DOI
Sharma V. Puthumana U. Karak P. Koner A. L. J. Org. Chem. 2018;83:11458–11462. doi: 10.1021/acs.joc.8b02023. PubMed DOI
Schierl C. Niazov-Elkan A. Shimon L. J. W. Feldman Y. Rybtchinski B. Guldi D. M. Nanoscale. 2018;10:20147–20154. doi: 10.1039/C8NR04155E. PubMed DOI
Saha A. Nia S. S. Rodríguez J. A. Chem. Rev. 2022;122:13883–13914. doi: 10.1021/acs.chemrev.1c00879. PubMed DOI PMC
Gorelik T. E. Beko S. L. Teteruk J. Heyse W. Schmidt M. U. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2023;79:122–137. doi: 10.1107/S2052520623000720. PubMed DOI PMC
Poppe R. Vandemeulebroucke D. Neder R. B. Hadermann J. IUCrJ. 2022;9:695–704. doi: 10.1107/S2052252522007746. PubMed DOI PMC
Gemmi M. Mugnaioli E. Gorelik T. E. Kolb U. Palatinus L. Boullay P. Hovmöller S. Pieter Abrahams J. ACS Cent. Sci. 2019;5:1315–1329. doi: 10.1021/acscentsci.9b00394. PubMed DOI PMC
Thomas B. Chang B. S. Chang J. J. Thuo M. Rossini A. J. Chem. Mater. 2022;34:7678–7691. doi: 10.1021/acs.chemmater.2c00593. DOI
Thomas B. Rombouts J. Gupta K. B. S. S. Orru R. V. A. Lammertsma K. de Groot H. J. M. Chem.–Eur. J. 2017;23:9346–9351. doi: 10.1002/chem.201701172. PubMed DOI PMC
Thomas B. Rombouts J. Oostergetel G. T. Gupta K. B. S. S. Buda F. Lammertsma K. Orru R. de Groot H. J. M. Chem.–Eur. J. 2017;23:3280–3284. doi: 10.1002/chem.201700324. PubMed DOI PMC
Ashbrook S. E. McKay D. Chem. Commun. 2016;52:7186–7204. doi: 10.1039/C6CC02542K. PubMed DOI
Salager E. Stein R. S. Pickard C. J. Elena B. Emsley L. Phys. Chem. Chem. Phys. 2009;11:2610–2621. doi: 10.1039/B821018G. PubMed DOI
Bryce D. L. IUCrJ. 2017;4:350–359. doi: 10.1107/S2052252517006042. PubMed DOI PMC
Cui J. Olmsted D. L. Mehta A. K. Asta M. Hayes S. E. Angew. Chem., Int. Ed. 2019;58:4210–4216. doi: 10.1002/anie.201813306. PubMed DOI
Whewell T. Seymour V. R. Griffiths K. Halcovitch N. R. Desai A. V. Morris R. E. Armstrong A. R. Griffin J. M. Magn. Reson. Chem. 2022;60:489–503. doi: 10.1002/mrc.5249. PubMed DOI
Dudenko D. V. Yates J. R. Harris K. D. M. Brown S. P. CrystEngComm. 2013;15:8797–8807. doi: 10.1039/C3CE41240G. DOI
Märker K. Pingret M. Mouesca J.-M. Gasparutto D. Hediger S. De Paëpe G. J. Am. Chem. Soc. 2015;137:13796–13799. doi: 10.1021/jacs.5b09964. PubMed DOI
Florian P. Massiot D. CrystEngComm. 2013;15:8623–8626. doi: 10.1039/C3CE40982A. DOI
Taulelle F. Solid State Sci. 2004;6:1053–1057. doi: 10.1016/j.solidstatesciences.2004.07.033. DOI
Juramy M. Chèvre R. Cerreia Vioglio P. Ziarelli F. Besson E. Gastaldi S. Viel S. Thureau P. Harris K. D. M. Mollica G. J. Am. Chem. Soc. 2021;143:6095–6103. doi: 10.1021/jacs.0c12982. PubMed DOI PMC
Harper A. F. Emge S. P. Magusin P. C. M. M. Grey C. P. Morris A. J. Chem. Sci. 2023;14:1155–1167. doi: 10.1039/D2SC04035B. PubMed DOI PMC
Caulkins B. G. Young R. P. Kudla R. A. Yang C. Bittbauer T. J. Bastin B. Hilario E. Fan L. Marsella M. J. Dunn M. F. Mueller L. J. J. Am. Chem. Soc. 2016;138:15214–15226. doi: 10.1021/jacs.6b08937. PubMed DOI PMC
Skotnicki M. Hodgkinson P. Solid State Nucl. Magn. Reson. 2022;118:101783. doi: 10.1016/j.ssnmr.2022.101783. PubMed DOI
Dawson D. M. Walton R. I. Wimperis S. Ashbrook S. E. Acta Crystallogr., Sect. C: Struct. Chem. 2017;73:191–201. doi: 10.1107/S2053229617000377. PubMed DOI
Holmes S. T. Engl O. G. Srnec M. N. Madura J. D. Quiñones R. Harper J. K. Schurko R. W. Iuliucci R. J. J. Phys. Chem. A. 2020;124:3109–3119. doi: 10.1021/acs.jpca.0c00421. PubMed DOI
Seifrid M. Reddy G. N. M. Chmelka B. F. Bazan G. C. Nat. Rev. Mater. 2020;5:910–930. doi: 10.1038/s41578-020-00232-5. DOI
Samanta S. Raval P. Manjunatha Reddy G. N. Chaudhuri D. ACS Cent. Sci. 2021;7:1391–1399. doi: 10.1021/acscentsci.1c00604. PubMed DOI PMC
Karothu D. P. Alhaddad Z. Göb C. R. Schürmann C. J. Bücker R. Naumov P. Angew. Chem., Int. Ed. 2023;62:e202303761. doi: 10.1002/anie.202303761. PubMed DOI
Balodis M. Cordova M. Hofstetter A. Day G. M. Emsley L. J. Am. Chem. Soc. 2022;144:7215–7223. doi: 10.1021/jacs.1c13733. PubMed DOI PMC
Shtukenberg A. G. Zhu Q. Carter D. J. Vogt L. Hoja J. Schneider E. Song H. Pokroy B. Polishchuk I. Tkatchenko A. Oganov A. R. Rohl A. L. Tuckerman M. E. Kahr B. Chem. Sci. 2017;8:4926–4940. doi: 10.1039/C7SC00168A. PubMed DOI PMC
Hughes C. E. Reddy G. N. M. Masiero S. Brown S. P. Williams P. A. Harris K. D. M. Chem. Sci. 2017;8:3971–3979. doi: 10.1039/C7SC00587C. PubMed DOI PMC
Smalley C. J. H. Hoskyns H. E. Hughes C. E. Johnstone D. N. Willhammar T. Young M. T. Pickard C. J. Logsdail A. J. Midgley P. A. Harris K. D. M. Chem. Sci. 2022;13:5277–5288. doi: 10.1039/D1SC06467C. PubMed DOI PMC
Austin A. Hestand N. J. McKendry I. G. Zhong C. Zhu X. Zdilla M. J. Spano F. C. Szarko J. M. J. Phys. Chem. Lett. 2017;8:1118–1123. doi: 10.1021/acs.jpclett.7b00283. PubMed DOI
Burian M. Rigodanza F. Demitri N. Dordević L. Marchesan S. Steinhartova T. Letofsky-Papst I. Khalakhan I. Mourad E. Freunberger S. A. Amenitsch H. Prato M. Syrgiannis Z. ACS Nano. 2018;12:5800–5806. doi: 10.1021/acsnano.8b01689. PubMed DOI
Goretzki G. Davies E. S. Argent S. P. Warren J. E. Blake A. J. Champness N. R. Inorg. Chem. 2009;48:10264–10274. doi: 10.1021/ic901379d. PubMed DOI
Hendsbee A. D. Sun J.-P. Law W. K. Yan H. Hill I. G. Spasyuk D. M. Welch G. C. Chem. Mater. 2016;28:7098–7109. doi: 10.1021/acs.chemmater.6b03292. DOI
Liu B. Böckmann M. Jiang W. Doltsinis N. L. Wang Z. J. Am. Chem. Soc. 2020;142:7092–7099. doi: 10.1021/jacs.0c00954. PubMed DOI
Rajasingh P. Cohen R. Shirman E. Shimon L. J. W. Rybtchinski B. J. Org. Chem. 2007;72:5973–5979. doi: 10.1021/jo070367n. PubMed DOI
Tominaga M. Kawahata M. Itoh T. Yamaguchi K. Cryst. Growth Des. 2018;18:37–41. doi: 10.1021/acs.cgd.7b01361. DOI
Zhen Y. Qian H. Xiang J. Qu J. Wang Z. Org. Lett. 2009;11:3084–3087. doi: 10.1021/ol901168k. PubMed DOI
Palatinus L. Brázda P. Jelínek M. Hrdá J. Steciuk G. Klementová M. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2019;75:512–522. doi: 10.1107/S2052520619007534. PubMed DOI
Brázda P. Klementová M. Krysiak Y. Palatinus L. IUCrJ. 2022;9:735–755. doi: 10.1107/S2052252522007904. PubMed DOI PMC
Palatinus L. Chapuis G. J. Appl. Crystallogr. 2007;40:786–790. doi: 10.1107/S0021889807029238. DOI
Petříček V. Palatinus L. Plášil J. Dušek M. Z. Kristallogr. 2023;238:271–282.
Palatinus L. Petřiček V. Corrêa C. A. Acta Crystallogr., Sect. A: Found. Adv. 2015;71:235–244. doi: 10.1107/S2053273315001266. PubMed DOI
Klar P. B. Krysiak Y. Xu H. Steciuk G. Cho J. Zou X. Palatinus L. Nat. Chem. 2023;15:848–855. doi: 10.1038/s41557-023-01186-1. PubMed DOI PMC
Rohliček J. Hušák M. J. Appl. Crystallogr. 2007;40:600–601. doi: 10.1107/S0021889807018894. DOI
Sebastian E. Philip A. M. Benny A. Hariharan M. Angew. Chem., Int. Ed. 2018;57:15696–15701. doi: 10.1002/anie.201810209. PubMed DOI
Dey A. Desiraju G. R. Chem. Commun. 2005:2486–2488. doi: 10.1039/B502516H. PubMed DOI
Swathi Krishna P. E. Babu H. C. Nair N. G. Hariharan M. Chem.–Asian J. 2023;18:e202201248. doi: 10.1002/asia.202201248. PubMed DOI
Ma S. Liu Y. Zhang J. Xu B. Tian W. J. Phys. Chem. Lett. 2020;11:10504–10510. doi: 10.1021/acs.jpclett.0c02917. PubMed DOI
Swathi Krishna P. E. Babu H. C. Nair N. G. Hariharan M. Chem.–Asian J. 2023;18:e202201248. doi: 10.1002/asia.202201248. PubMed DOI
Mohan A. Sasikumar D. Bhat V. Hariharan M. Angew. Chem., Int. Ed. 2020;59:3201–3208. doi: 10.1002/anie.201910687. PubMed DOI