Unveiling the topology of partially disordered micro-crystalline nitro-perylenediimide with X-aggregate stacking: an integrated approach

. 2024 Jan 03 ; 15 (2) : 490-499. [epub] 20231123

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38179523

Profound knowledge of the molecular structure and supramolecular organization of organic molecules is essential to understand their structure-property relationships. Herein we demonstrate the packing arrangement of partially disordered nitro-perylenediimide (NO2-PDI), revealing that the perylenediimide units exhibit an X-shaped packing pattern. The packing of NO2-PDI is derived using a complementary approach that utilises solid-state NMR (ssNMR) and 3D electron diffraction (3D ED) techniques. Perylenediimide (PDI) molecules are captivating due to their high luminescence efficiency and optoelectronic properties, which are related to supramolecular self-assembly. Increasing the alkyl chain length on the imide substituent poses a more significant challenge in crystallizing the resulting molecule. In addition to the alkyl tails, other functional groups, like the nitro group attached as a bay substituent, can also cause disorder. Such heterogeneity could lead to diffuse scattering, which then complicates the interpretation of diffraction experiment data, where perfect periodicity is expected. As a result, there is an unmet need to develop a methodology for solving the structures of difficult-to-crystallize materials. A synergistic approach is utilised in this manuscript to understand the packing arrangement of the disordered material NO2-PDI by making use of 3D ED, ssNMR and density functional theory calculations (DFT). The combination of these experimental and theoretical approaches provides great promise in enabling the structural investigation of novel materials with customized properties across various applications, which are, due to the internal disorder, very difficult to study by diffraction techniques. By effectively addressing these challenges, our methodology opens up new avenues for material characterization, thereby driving exciting advancements in the field.

Zobrazit více v PubMed

Bouwens T. Bakker T. M. A. Zhu K. Hasenack J. Dieperink M. Brouwer A. M. Huijser A. Mathew S. Reek J. N. H. Nat. Chem. 2023;15:213–221. doi: 10.1038/s41557-022-01068-y. PubMed DOI

Lehn J.-M. Science. 1993;260:1762–1763. doi: 10.1126/science.8511582. PubMed DOI

Bialas D. Kirchner E. Röhr M. I. S. Würthner F. J. Am. Chem. Soc. 2021;143:4500–4518. doi: 10.1021/jacs.0c13245. PubMed DOI

Harris K. D. M. Tremayne M. Chem. Mater. 1996;8:2554–2570. doi: 10.1021/cm960218d. DOI

Deringer V. L. Bernstein N. Csányi G. Ben Mahmoud C. Ceriotti M. Wilson M. Drabold D. A. Elliott S. R. Nature. 2021;589:59–64. doi: 10.1038/s41586-020-03072-z. PubMed DOI

Sivaraman G. Krishnamoorthy A. N. Baur M. Holm C. Stan M. Csányi G. Benmore C. Vázquez-Mayagoitia Á. npj Comput. Mater. 2020;6:104. doi: 10.1038/s41524-020-00367-7. DOI

Woodley S. M. Catlow R. Nat. Mater. 2008;7:937–946. doi: 10.1038/nmat2321. PubMed DOI

Hoja J. Ko H.-Y. Neumann M. A. Car R. DiStasio R. A. Tkatchenko A. Sci. Adv. 2023;5:eaau3338. doi: 10.1126/sciadv.aau3338. PubMed DOI PMC

Kaufmann C. Bialas D. Stolte M. Würthner F. J. Am. Chem. Soc. 2018;140:9986–9995. doi: 10.1021/jacs.8b05490. PubMed DOI

Briseno A. L. Mannsfeld S. C. B. Reese C. Hancock J. M. Xiong Y. Jenekhe S. A. Bao Z. Xia Y. Nano Lett. 2007;7:2847–2853. doi: 10.1021/nl071495u. PubMed DOI

Li G. Zhao Y. Li J. Cao J. Zhu J. Sun X. W. Zhang Q. J. Org. Chem. 2015;80:196–203. doi: 10.1021/jo502296z. PubMed DOI

Zhang F. Ma Y. Chi Y. Yu H. Li Y. Jiang T. Wei X. Shi J. Sci. Rep. 2018;8:8208. doi: 10.1038/s41598-018-26502-5. PubMed DOI PMC

Zhou W. Liu G. Yang B. Ji Q. Xiang W. He H. Xu Z. Qi C. Li S. Yang S. Xu C. Sci. Total Environ. 2021;780:146483. doi: 10.1016/j.scitotenv.2021.146483. PubMed DOI

Li H. Giri G. Tok J. B.-H. Bao Z. MRS Bull. 2013;38:34–42. doi: 10.1557/mrs.2012.309. DOI

Li J. Qin Z. Sun Y. Zhen Y. Liu J. Zou Y. Li C. Lu X. Jiang L. Zhang X. Ji D. Li L. Dong H. Hu W. Angew. Chem., Int. Ed. 2022;61:e202206825. doi: 10.1002/anie.202206825. PubMed DOI

Karaush-Karmazin N. N. Baryshnikov G. V. Kuklin A. V. Saykova D. I. Ågren H. Minaev B. F. J. Mater. Chem. C. 2021;9:1451–1466. doi: 10.1039/D0TC03674A. DOI

Huang L. Y. Ai Q. Risko C. J. Chem. Phys. 2022;157:84703. doi: 10.1063/5.0097421. PubMed DOI

Sebastian E. Hariharan M. J. Am. Chem. Soc. 2021;143:13769–13781. doi: 10.1021/jacs.1c05793. PubMed DOI

Mazumder A. Sebastian E. Hariharan M. Chem. Sci. 2022;13:8860–8870. doi: 10.1039/D2SC02979K. PubMed DOI PMC

Rosenne S. Grinvald E. Shirman E. Neeman L. Dutta S. Bar-Elli O. Ben-Zvi R. Oksenberg E. Milko P. Kalchenko V. Weissman H. Oron D. Rybtchinski B. Nano Lett. 2015;15:7232–7237. doi: 10.1021/acs.nanolett.5b02010. PubMed DOI

Sharma V. Puthumana U. Karak P. Koner A. L. J. Org. Chem. 2018;83:11458–11462. doi: 10.1021/acs.joc.8b02023. PubMed DOI

Schierl C. Niazov-Elkan A. Shimon L. J. W. Feldman Y. Rybtchinski B. Guldi D. M. Nanoscale. 2018;10:20147–20154. doi: 10.1039/C8NR04155E. PubMed DOI

Saha A. Nia S. S. Rodríguez J. A. Chem. Rev. 2022;122:13883–13914. doi: 10.1021/acs.chemrev.1c00879. PubMed DOI PMC

Gorelik T. E. Beko S. L. Teteruk J. Heyse W. Schmidt M. U. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2023;79:122–137. doi: 10.1107/S2052520623000720. PubMed DOI PMC

Poppe R. Vandemeulebroucke D. Neder R. B. Hadermann J. IUCrJ. 2022;9:695–704. doi: 10.1107/S2052252522007746. PubMed DOI PMC

Gemmi M. Mugnaioli E. Gorelik T. E. Kolb U. Palatinus L. Boullay P. Hovmöller S. Pieter Abrahams J. ACS Cent. Sci. 2019;5:1315–1329. doi: 10.1021/acscentsci.9b00394. PubMed DOI PMC

Thomas B. Chang B. S. Chang J. J. Thuo M. Rossini A. J. Chem. Mater. 2022;34:7678–7691. doi: 10.1021/acs.chemmater.2c00593. DOI

Thomas B. Rombouts J. Gupta K. B. S. S. Orru R. V. A. Lammertsma K. de Groot H. J. M. Chem.–Eur. J. 2017;23:9346–9351. doi: 10.1002/chem.201701172. PubMed DOI PMC

Thomas B. Rombouts J. Oostergetel G. T. Gupta K. B. S. S. Buda F. Lammertsma K. Orru R. de Groot H. J. M. Chem.–Eur. J. 2017;23:3280–3284. doi: 10.1002/chem.201700324. PubMed DOI PMC

Ashbrook S. E. McKay D. Chem. Commun. 2016;52:7186–7204. doi: 10.1039/C6CC02542K. PubMed DOI

Salager E. Stein R. S. Pickard C. J. Elena B. Emsley L. Phys. Chem. Chem. Phys. 2009;11:2610–2621. doi: 10.1039/B821018G. PubMed DOI

Bryce D. L. IUCrJ. 2017;4:350–359. doi: 10.1107/S2052252517006042. PubMed DOI PMC

Cui J. Olmsted D. L. Mehta A. K. Asta M. Hayes S. E. Angew. Chem., Int. Ed. 2019;58:4210–4216. doi: 10.1002/anie.201813306. PubMed DOI

Whewell T. Seymour V. R. Griffiths K. Halcovitch N. R. Desai A. V. Morris R. E. Armstrong A. R. Griffin J. M. Magn. Reson. Chem. 2022;60:489–503. doi: 10.1002/mrc.5249. PubMed DOI

Dudenko D. V. Yates J. R. Harris K. D. M. Brown S. P. CrystEngComm. 2013;15:8797–8807. doi: 10.1039/C3CE41240G. DOI

Märker K. Pingret M. Mouesca J.-M. Gasparutto D. Hediger S. De Paëpe G. J. Am. Chem. Soc. 2015;137:13796–13799. doi: 10.1021/jacs.5b09964. PubMed DOI

Florian P. Massiot D. CrystEngComm. 2013;15:8623–8626. doi: 10.1039/C3CE40982A. DOI

Taulelle F. Solid State Sci. 2004;6:1053–1057. doi: 10.1016/j.solidstatesciences.2004.07.033. DOI

Juramy M. Chèvre R. Cerreia Vioglio P. Ziarelli F. Besson E. Gastaldi S. Viel S. Thureau P. Harris K. D. M. Mollica G. J. Am. Chem. Soc. 2021;143:6095–6103. doi: 10.1021/jacs.0c12982. PubMed DOI PMC

Harper A. F. Emge S. P. Magusin P. C. M. M. Grey C. P. Morris A. J. Chem. Sci. 2023;14:1155–1167. doi: 10.1039/D2SC04035B. PubMed DOI PMC

Caulkins B. G. Young R. P. Kudla R. A. Yang C. Bittbauer T. J. Bastin B. Hilario E. Fan L. Marsella M. J. Dunn M. F. Mueller L. J. J. Am. Chem. Soc. 2016;138:15214–15226. doi: 10.1021/jacs.6b08937. PubMed DOI PMC

Skotnicki M. Hodgkinson P. Solid State Nucl. Magn. Reson. 2022;118:101783. doi: 10.1016/j.ssnmr.2022.101783. PubMed DOI

Dawson D. M. Walton R. I. Wimperis S. Ashbrook S. E. Acta Crystallogr., Sect. C: Struct. Chem. 2017;73:191–201. doi: 10.1107/S2053229617000377. PubMed DOI

Holmes S. T. Engl O. G. Srnec M. N. Madura J. D. Quiñones R. Harper J. K. Schurko R. W. Iuliucci R. J. J. Phys. Chem. A. 2020;124:3109–3119. doi: 10.1021/acs.jpca.0c00421. PubMed DOI

Seifrid M. Reddy G. N. M. Chmelka B. F. Bazan G. C. Nat. Rev. Mater. 2020;5:910–930. doi: 10.1038/s41578-020-00232-5. DOI

Samanta S. Raval P. Manjunatha Reddy G. N. Chaudhuri D. ACS Cent. Sci. 2021;7:1391–1399. doi: 10.1021/acscentsci.1c00604. PubMed DOI PMC

Karothu D. P. Alhaddad Z. Göb C. R. Schürmann C. J. Bücker R. Naumov P. Angew. Chem., Int. Ed. 2023;62:e202303761. doi: 10.1002/anie.202303761. PubMed DOI

Balodis M. Cordova M. Hofstetter A. Day G. M. Emsley L. J. Am. Chem. Soc. 2022;144:7215–7223. doi: 10.1021/jacs.1c13733. PubMed DOI PMC

Shtukenberg A. G. Zhu Q. Carter D. J. Vogt L. Hoja J. Schneider E. Song H. Pokroy B. Polishchuk I. Tkatchenko A. Oganov A. R. Rohl A. L. Tuckerman M. E. Kahr B. Chem. Sci. 2017;8:4926–4940. doi: 10.1039/C7SC00168A. PubMed DOI PMC

Hughes C. E. Reddy G. N. M. Masiero S. Brown S. P. Williams P. A. Harris K. D. M. Chem. Sci. 2017;8:3971–3979. doi: 10.1039/C7SC00587C. PubMed DOI PMC

Smalley C. J. H. Hoskyns H. E. Hughes C. E. Johnstone D. N. Willhammar T. Young M. T. Pickard C. J. Logsdail A. J. Midgley P. A. Harris K. D. M. Chem. Sci. 2022;13:5277–5288. doi: 10.1039/D1SC06467C. PubMed DOI PMC

Austin A. Hestand N. J. McKendry I. G. Zhong C. Zhu X. Zdilla M. J. Spano F. C. Szarko J. M. J. Phys. Chem. Lett. 2017;8:1118–1123. doi: 10.1021/acs.jpclett.7b00283. PubMed DOI

Burian M. Rigodanza F. Demitri N. Dordević L. Marchesan S. Steinhartova T. Letofsky-Papst I. Khalakhan I. Mourad E. Freunberger S. A. Amenitsch H. Prato M. Syrgiannis Z. ACS Nano. 2018;12:5800–5806. doi: 10.1021/acsnano.8b01689. PubMed DOI

Goretzki G. Davies E. S. Argent S. P. Warren J. E. Blake A. J. Champness N. R. Inorg. Chem. 2009;48:10264–10274. doi: 10.1021/ic901379d. PubMed DOI

Hendsbee A. D. Sun J.-P. Law W. K. Yan H. Hill I. G. Spasyuk D. M. Welch G. C. Chem. Mater. 2016;28:7098–7109. doi: 10.1021/acs.chemmater.6b03292. DOI

Liu B. Böckmann M. Jiang W. Doltsinis N. L. Wang Z. J. Am. Chem. Soc. 2020;142:7092–7099. doi: 10.1021/jacs.0c00954. PubMed DOI

Rajasingh P. Cohen R. Shirman E. Shimon L. J. W. Rybtchinski B. J. Org. Chem. 2007;72:5973–5979. doi: 10.1021/jo070367n. PubMed DOI

Tominaga M. Kawahata M. Itoh T. Yamaguchi K. Cryst. Growth Des. 2018;18:37–41. doi: 10.1021/acs.cgd.7b01361. DOI

Zhen Y. Qian H. Xiang J. Qu J. Wang Z. Org. Lett. 2009;11:3084–3087. doi: 10.1021/ol901168k. PubMed DOI

Palatinus L. Brázda P. Jelínek M. Hrdá J. Steciuk G. Klementová M. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2019;75:512–522. doi: 10.1107/S2052520619007534. PubMed DOI

Brázda P. Klementová M. Krysiak Y. Palatinus L. IUCrJ. 2022;9:735–755. doi: 10.1107/S2052252522007904. PubMed DOI PMC

Palatinus L. Chapuis G. J. Appl. Crystallogr. 2007;40:786–790. doi: 10.1107/S0021889807029238. DOI

Petříček V. Palatinus L. Plášil J. Dušek M. Z. Kristallogr. 2023;238:271–282.

Palatinus L. Petřiček V. Corrêa C. A. Acta Crystallogr., Sect. A: Found. Adv. 2015;71:235–244. doi: 10.1107/S2053273315001266. PubMed DOI

Klar P. B. Krysiak Y. Xu H. Steciuk G. Cho J. Zou X. Palatinus L. Nat. Chem. 2023;15:848–855. doi: 10.1038/s41557-023-01186-1. PubMed DOI PMC

Rohliček J. Hušák M. J. Appl. Crystallogr. 2007;40:600–601. doi: 10.1107/S0021889807018894. DOI

Sebastian E. Philip A. M. Benny A. Hariharan M. Angew. Chem., Int. Ed. 2018;57:15696–15701. doi: 10.1002/anie.201810209. PubMed DOI

Dey A. Desiraju G. R. Chem. Commun. 2005:2486–2488. doi: 10.1039/B502516H. PubMed DOI

Swathi Krishna P. E. Babu H. C. Nair N. G. Hariharan M. Chem.–Asian J. 2023;18:e202201248. doi: 10.1002/asia.202201248. PubMed DOI

Ma S. Liu Y. Zhang J. Xu B. Tian W. J. Phys. Chem. Lett. 2020;11:10504–10510. doi: 10.1021/acs.jpclett.0c02917. PubMed DOI

Swathi Krishna P. E. Babu H. C. Nair N. G. Hariharan M. Chem.–Asian J. 2023;18:e202201248. doi: 10.1002/asia.202201248. PubMed DOI

Mohan A. Sasikumar D. Bhat V. Hariharan M. Angew. Chem., Int. Ed. 2020;59:3201–3208. doi: 10.1002/anie.201910687. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...