A simple cryotransfer method for 3D electron diffraction measurements of highly sensitive samples

. 2025 Jun 01 ; 58 (Pt 3) : 1079-1084. [epub] 20250502

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40475931

The accurate characterization of highly sensitive materials using 3D electron diffraction (3D ED) is often challenged by sample degradation caused by exposure to moisture, air, temperature variations and high vacuum during the transfer and introduction into the transmission electron microscope (TEM). A cryogenic sample-transfer protocol is presented here, designed to enable the safe and effective transfer of reactive samples into the TEM, ensuring an inert and moisture-free environment throughout the process. The protocol was validated by redetermining the crystal structures of the moisture-sensitive, strongly oxidizing and highly reactive compounds XeF2, XeF4 and XeF2·XeF4 cocrystal. Crystal structures of all three compounds were successfully solved ab initio and dynamically refined, yielding results that showed good agreement with the previously reported X-ray and neutron diffraction structures. This approach holds significant promise for advancing the study of other reactive and moisture-sensitive samples, enabling precise structural characterization in cases where traditional TEM sample preparation is unsuitable.

Zobrazit více v PubMed

Belak Vivod, M., Jagličić, Z., King, G., Hansen, T. C., Lozinšek, M. & Dragomir, M. (2024). J. Am. Chem. Soc.146, 30510–30517. PubMed PMC

Bortolus, M. R., Mercier, H. P. A., Nguyen, B. & Schrobilgen, G. J. (2021). Angew. Chem. Int. Ed.60, 23678–23686. PubMed

Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst.48, 306–309.

Burns, J. H. (1963). J. Phys. Chem.67, 536.

Burns, J. H., Ellison, R. D. & Levy, H. A. (1965). Acta Cryst.18, 11–16.

Chernick, C. L. (1966). J. Chem. Educ.43, 619.

Do, J.-L. & Friščić, T. (2017). ACS Cent. Sci.3, 13–19. PubMed PMC

Elliott, H. St A., Lehmann, J. F., Mercier, H. P. A., Jenkins, H. D. B. & Schrobilgen, G. J. (2010). Inorg. Chem.49, 8504–8523. PubMed

Gemmi, M., Mugnaioli, E., Gorelik, T. E., Kolb, U., Palatinus, L., Boullay, P., Hovmöller, S. & Abrahams, J. P. (2019). ACS Cent. Sci.5, 1315–1329. PubMed PMC

Goettel, J. T. & Schrobilgen, G. J. (2016). Inorg. Chem.55, 12975–12981. PubMed

Gruene, T., Holstein, J. J., Clever, G. H. & Keppler, B. (2021). Nat. Rev. Chem.5, 660–668. PubMed

Gruene, T. & Mugnaioli, E. (2021). Chem. Rev.121, 11823–11834. PubMed PMC

Holloway, J. H. (1967). Talanta, 14, 871–873. PubMed

Ibers, J. A. & Hamilton, W. C. (1963). Science, 139, 106–107. PubMed

Klar, P. B., Krysiak, Y., Xu, H., Steciuk, G., Cho, J., Zou, X. & Palatinus, L. (2023). Nat. Chem.15, 848–855. PubMed PMC

Levy, H. A. & Agron, P. A. (1963). J. Am. Chem. Soc.85, 241–242.

Li, Y., Li, Y., Pei, A., Yan, K., Sun, Y., Wu, C.-L., Joubert, L.-M., Chin, R., Koh, A. L., Yu, Y., Perrino, J., Butz, B., Chu, S. & Cui, Y. (2017). Science, 358, 506–510. PubMed

Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst.53, 226–235. PubMed PMC

Motaln, K., Gurung, K., Brázda, P., Kokalj, A., Radan, K., Dragomir, M., Žemva, B., Palatinus, L. & Lozinšek, M. (2024). ACS Cent. Sci.10, 1733–1741. PubMed PMC

Palatinus, L., Brázda, P., Jelínek, M., Hrdá, J., Steciuk, G. & Klementová, M. (2019). Acta Cryst. B75, 512–522. PubMed

Palatinus, L., Petříček, V. & Corrêa, C. A. (2015). Acta Cryst. A71, 235–244. PubMed

Petříček, V., Palatinus, L., Plášil, J. & Dušek, M. (2023). Z. Kristallogr. Cryst. Mater.238, 271–282.

Saha, A., Nia, S. S. & Rodríguez, J. A. (2022). Chem. Rev.122, 13883–13914. PubMed PMC

Sala, A., Faye Diouf, M. D., Marchetti, D., Pasquale, L. & Gemmi, M. (2024). Cryst. Growth Des.24, 3246–3255. PubMed PMC

Schreiner, F., McDonald, G. N. & Chernick, C. L. (1968). J. Phys. Chem.72, 1162–1166.

Segal, E. B. (2000). Chem. Health Saf.7, 18–23.

Siegel, S. & Gebert, E. (1963). J. Am. Chem. Soc.85, 240.

Šmalc, A., Lutar, K. & Kinkead, S. A. (1992). Inorganic syntheses, Vol. 29, edited by R. N. Grimes, pp. 1–4. Chichester: John Wiley & Sons Ltd.

Tavčar, G. & Žemva, B. (2009). Angew. Chem. Int. Ed.48, 1432–1434. PubMed

Templeton, D. H., Zalkin, A., Forrester, J. D. & Williamson, S. M. (1963). J. Am. Chem. Soc.85, 242.

Tramšek, M. & Žemva, B. (2006). Acta Chim. Slov.53, 105–116.

Truong, K.-N., Ito, S., Wojciechowski, J. M., Göb, C. R., Schürmann, C. J., Yamano, A., Del Campo, M., Okunishi, E., Aoyama, Y., Mihira, T., Hosogi, N., Benet-Buchholz, J., Escudero-Adán, E. C., White, F. J., Ferrara, J. D. & Bücker, R. (2023). Symmetry, 15, 1555.

Wang, H., Yu, Z., Kong, X., Huang, W., Zhang, Z., Mackanic, D. G., Huang, X., Qin, J., Bao, Z. & Cui, Y. (2021). Adv. Mater.33, 2008619. PubMed

Yonekura, K., Maki-Yonekura, S. & Takaba, K. (2023). Structure, 31, 1328–1334. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...