A simple cryotransfer method for 3D electron diffraction measurements of highly sensitive samples
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40475931
PubMed Central
PMC12135996
DOI
10.1107/s1600576725002456
PII: S1600576725002456
Knihovny.cz E-zdroje
- Klíčová slova
- 3D electron diffraction, cryotransfer, noble-gas compounds, xenon fluorides,
- Publikační typ
- časopisecké články MeSH
The accurate characterization of highly sensitive materials using 3D electron diffraction (3D ED) is often challenged by sample degradation caused by exposure to moisture, air, temperature variations and high vacuum during the transfer and introduction into the transmission electron microscope (TEM). A cryogenic sample-transfer protocol is presented here, designed to enable the safe and effective transfer of reactive samples into the TEM, ensuring an inert and moisture-free environment throughout the process. The protocol was validated by redetermining the crystal structures of the moisture-sensitive, strongly oxidizing and highly reactive compounds XeF2, XeF4 and XeF2·XeF4 cocrystal. Crystal structures of all three compounds were successfully solved ab initio and dynamically refined, yielding results that showed good agreement with the previously reported X-ray and neutron diffraction structures. This approach holds significant promise for advancing the study of other reactive and moisture-sensitive samples, enabling precise structural characterization in cases where traditional TEM sample preparation is unsuitable.
Jožef Stefan Institute Jamova cesta 39 1000Ljubljana Slovenia
Jožef Stefan International Postgraduate School Jamova cesta 39 1000Ljubljana Slovenia
Zobrazit více v PubMed
Belak Vivod, M., Jagličić, Z., King, G., Hansen, T. C., Lozinšek, M. & Dragomir, M. (2024). J. Am. Chem. Soc.146, 30510–30517. PubMed PMC
Bortolus, M. R., Mercier, H. P. A., Nguyen, B. & Schrobilgen, G. J. (2021). Angew. Chem. Int. Ed.60, 23678–23686. PubMed
Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst.48, 306–309.
Burns, J. H. (1963). J. Phys. Chem.67, 536.
Burns, J. H., Ellison, R. D. & Levy, H. A. (1965). Acta Cryst.18, 11–16.
Chernick, C. L. (1966). J. Chem. Educ.43, 619.
Do, J.-L. & Friščić, T. (2017). ACS Cent. Sci.3, 13–19. PubMed PMC
Elliott, H. St A., Lehmann, J. F., Mercier, H. P. A., Jenkins, H. D. B. & Schrobilgen, G. J. (2010). Inorg. Chem.49, 8504–8523. PubMed
Gemmi, M., Mugnaioli, E., Gorelik, T. E., Kolb, U., Palatinus, L., Boullay, P., Hovmöller, S. & Abrahams, J. P. (2019). ACS Cent. Sci.5, 1315–1329. PubMed PMC
Goettel, J. T. & Schrobilgen, G. J. (2016). Inorg. Chem.55, 12975–12981. PubMed
Gruene, T., Holstein, J. J., Clever, G. H. & Keppler, B. (2021). Nat. Rev. Chem.5, 660–668. PubMed
Gruene, T. & Mugnaioli, E. (2021). Chem. Rev.121, 11823–11834. PubMed PMC
Holloway, J. H. (1967). Talanta, 14, 871–873. PubMed
Ibers, J. A. & Hamilton, W. C. (1963). Science, 139, 106–107. PubMed
Klar, P. B., Krysiak, Y., Xu, H., Steciuk, G., Cho, J., Zou, X. & Palatinus, L. (2023). Nat. Chem.15, 848–855. PubMed PMC
Levy, H. A. & Agron, P. A. (1963). J. Am. Chem. Soc.85, 241–242.
Li, Y., Li, Y., Pei, A., Yan, K., Sun, Y., Wu, C.-L., Joubert, L.-M., Chin, R., Koh, A. L., Yu, Y., Perrino, J., Butz, B., Chu, S. & Cui, Y. (2017). Science, 358, 506–510. PubMed
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst.53, 226–235. PubMed PMC
Motaln, K., Gurung, K., Brázda, P., Kokalj, A., Radan, K., Dragomir, M., Žemva, B., Palatinus, L. & Lozinšek, M. (2024). ACS Cent. Sci.10, 1733–1741. PubMed PMC
Palatinus, L., Brázda, P., Jelínek, M., Hrdá, J., Steciuk, G. & Klementová, M. (2019). Acta Cryst. B75, 512–522. PubMed
Palatinus, L., Petříček, V. & Corrêa, C. A. (2015). Acta Cryst. A71, 235–244. PubMed
Petříček, V., Palatinus, L., Plášil, J. & Dušek, M. (2023). Z. Kristallogr. Cryst. Mater.238, 271–282.
Saha, A., Nia, S. S. & Rodríguez, J. A. (2022). Chem. Rev.122, 13883–13914. PubMed PMC
Sala, A., Faye Diouf, M. D., Marchetti, D., Pasquale, L. & Gemmi, M. (2024). Cryst. Growth Des.24, 3246–3255. PubMed PMC
Schreiner, F., McDonald, G. N. & Chernick, C. L. (1968). J. Phys. Chem.72, 1162–1166.
Segal, E. B. (2000). Chem. Health Saf.7, 18–23.
Siegel, S. & Gebert, E. (1963). J. Am. Chem. Soc.85, 240.
Šmalc, A., Lutar, K. & Kinkead, S. A. (1992). Inorganic syntheses, Vol. 29, edited by R. N. Grimes, pp. 1–4. Chichester: John Wiley & Sons Ltd.
Tavčar, G. & Žemva, B. (2009). Angew. Chem. Int. Ed.48, 1432–1434. PubMed
Templeton, D. H., Zalkin, A., Forrester, J. D. & Williamson, S. M. (1963). J. Am. Chem. Soc.85, 242.
Tramšek, M. & Žemva, B. (2006). Acta Chim. Slov.53, 105–116.
Truong, K.-N., Ito, S., Wojciechowski, J. M., Göb, C. R., Schürmann, C. J., Yamano, A., Del Campo, M., Okunishi, E., Aoyama, Y., Mihira, T., Hosogi, N., Benet-Buchholz, J., Escudero-Adán, E. C., White, F. J., Ferrara, J. D. & Bücker, R. (2023). Symmetry, 15, 1555.
Wang, H., Yu, Z., Kong, X., Huang, W., Zhang, Z., Mackanic, D. G., Huang, X., Qin, J., Bao, Z. & Cui, Y. (2021). Adv. Mater.33, 2008619. PubMed
Yonekura, K., Maki-Yonekura, S. & Takaba, K. (2023). Structure, 31, 1328–1334. PubMed