Reactive Noble-Gas Compounds Explored by 3D Electron Diffraction: XeF2-MnF4 Adducts and a Facile Sample Handling Procedure

. 2024 Sep 25 ; 10 (9) : 1733-1741. [epub] 20240814

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39345812

Recent advances in 3D electron diffraction (3D ED) have succeeded in matching the capabilities of single-crystal X-ray diffraction (SCXRD), while requiring only submicron crystals for successful structural investigations. One of the many diverse areas to benefit from the 3D ED structural analysis is main-group chemistry, where compounds are often poorly crystalline or single-crystal growth is challenging. A facile method for loading and transferring highly air-sensitive and strongly oxidizing samples at low temperatures to a transmission electron microscope (TEM) for 3D ED analysis was successfully developed and tested on xenon(II) compounds from the XeF2-MnF4 system. The crystal structures determined on nanometer-sized crystallites by dynamical refinement of the 3D ED data are in complete agreement with the results obtained by SCXRD on micrometer-sized crystals and by periodic density-functional theory (DFT) calculations, demonstrating the applicability of this approach for structural studies of noble-gas compounds and highly reactive species in general. The compounds 3XeF2·2MnF4, XeF2·MnF4, and XeF2·2MnF4 are rare examples of structurally fully characterized xenon difluoride-metal tetrafluoride adducts and thus advance our knowledge of the diverse structural chemistry of these systems, which also includes the hitherto poorly characterized first noble-gas compound, "XePtF6".

Zobrazit více v PubMed

Blake A. J.; Clegg W.; Cole J. M.; Evans J. S. O.; Main P.; Parsons S.; Watkin D. J.. Crystal Structure Analysis: Principles and Practice, 2nd ed.; Clegg W., Ed.; Oxford University Press: New York, 2009.

Howard J. A. K.; Probert M. R. Cutting-Edge Techniques Used for the Structural Investigation of Single Crystals. Science 2014, 343 (6175), 1098–1102. 10.1126/science.1247252. PubMed DOI

Gemmi M.; Mugnaioli E.; Gorelik T. E.; Kolb U.; Palatinus L.; Boullay P.; Hovmöller S.; Abrahams J. P. 3D Electron Diffraction: The Nanocrystallography Revolution. ACS Cent. Sci. 2019, 5 (8), 1315–1329. 10.1021/acscentsci.9b00394. PubMed DOI PMC

Gruene T.; Holstein J. J.; Clever G. H.; Keppler B. Establishing Electron Diffraction in Chemical Crystallography. Nat. Rev. Chem. 2021, 5 (9), 660–668. 10.1038/s41570-021-00302-4. PubMed DOI

Gruene T.; Mugnaioli E. 3D Electron Diffraction for Chemical Analysis: Instrumentation Developments and Innovative Applications. Chem. Rev. 2021, 121 (19), 11823–11834. 10.1021/acs.chemrev.1c00207. PubMed DOI PMC

Jones C. G.; Asay M.; Kim L. J.; Kleinsasser J. F.; Saha A.; Fulton T. J.; Berkley K. R.; Cascio D.; Malyutin A. G.; Conley M. P.; Stoltz B. M.; Lavallo V.; Rodríguez J. A.; Nelson H. M. Characterization of Reactive Organometallic Species via MicroED. ACS Cent. Sci. 2019, 5 (9), 1507–1513. 10.1021/acscentsci.9b00403. PubMed DOI PMC

Bartlett N. Xenon Hexafluoroplatinate(V) Xe+[PtF6]−. Proc. Chem. Soc. 1962, 218.10.1039/PS9620000197. DOI

Hargittai I. Neil Bartlett and the First Noble-Gas Compound. Struct. Chem. 2009, 20 (6), 953–959. 10.1007/s11224-009-9526-9. DOI

Bartlett N.; Jha N. K.. The Xenon-Platinum Hexafluoride Reaction and Related Reactions. In Noble-Gas Compounds; Hyman H. H., Ed.; The University of Chicago Press: Chicago, 1963; pp 23–30.

Bartlett N.; Žemva B.; Graham L. Redox Reactions in the XeF2/Platinum Fluoride and XeF2/Palladium Fluoride Systems and the Conversion of XeF2 to XeF4 and Xe. J. Fluorine Chem. 1976, 7 (1), 301–320. 10.1016/S0022-1139(00)84003-8. DOI

Graham L.; Graudejus O.; Jha N. K.; Bartlett N. Concerning the Nature of XePtF6. Coord. Chem. Rev. 2000, 197 (1), 321–334. 10.1016/S0010-8545(99)00190-3. DOI

Craciun R.; Picone D.; Long R. T.; Li S.; Dixon D. A.; Peterson K. A.; Christe K. O. Third Row Transition Metal Hexafluorides, Extraordinary Oxidizers, and Lewis Acids: Electron Affinities, Fluoride Affinities, and Heats of Formation of WF6, ReF6, OsF6, IrF6, PtF6, and AuF6. Inorg. Chem. 2010, 49 (3), 1056–1070. 10.1021/ic901967h. PubMed DOI

Christe K. O. Bartlett’s Discovery of Noble Gas Fluorides, a Milestone in Chemical History. Chem. Commun. 2013, 49 (41), 4588–4590. 10.1039/c3cc41387j. PubMed DOI

Žemva B. Binary Fluorides of Noble-Gases and Their Compounds. Croat. Chem. Acta 1988, 61 (1), 163–187.

Žemva B.; Slivnik J. On the Xenon-Fluorine Reactions. J. Inorg. Nucl. Chem. 1976, 28 (Supplement 1), 173–178. 10.1016/0022-1902(76)80622-7. DOI

Žemva B.; Slivnik J.; Bohinc M. On the Syntheses of Xenon Fluorotitanates(IV). J. Inorg. Nucl. Chem. 1976, 38 (1), 73–74. 10.1016/0022-1902(76)80051-6. DOI

Radan K.; Goreshnik E.; Žemva B. Xenon(II) Polyfluoridotitanates(IV): Synthesis and Structural Characterization of [Xe2F3]+ and [XeF]+ Salts. Angew. Chem. Int. Ed. 2014, 53 (50), 13715–13719. 10.1002/anie.201406404. PubMed DOI

Slivnik J.; Žemva B. Reaktionen von Chrom(V)-fluorid mit Xenon und Xenondifluorid. Z. Anorg. Allg. Chem. 1971, 385 (1–2), 137–141. 10.1002/zaac.19713850119. DOI

Lutar K.; Leban I.; Ogrin T.; Žemva B. XeF2·CrF4 and (XeF5+CrF5–)4·XeF4: Syntheses, Crystal Structures and Some Properties. Eur. J. Solid State Inorg. Chem. 1992, 29 (4–5), 713–727.

Lutar K.; Borrmann H.; Žemva B. XeF2·2CrF4 and XeF5+CrF5–: Syntheses, Crystal Structures, and Some Properties. Inorg. Chem. 1998, 37 (12), 3002–3006. 10.1021/ic971580c. DOI

Žemva B.; Zupan J.; Slivnik J. On the XeMnF6 Synthesis. J. Inorg. Nucl. Chem. 1971, 33 (11), 3953–3955. 10.1016/0022-1902(71)80305-6. DOI

Bohinc M.; Grannec J.; Slivnik J.; Žemva B. On the Syntheses of Xenon Fluoromanganates(IV). J. Inorg. Nucl. Chem. 1976, 38 (1), 75–76. 10.1016/0022-1902(76)80052-8. DOI

Lozinšek M. Synthesis and Characterization of Xenon(II) Hexafluoromanganates(IV). Diploma thesis, University of Ljubljana, 2008.

Družina B.; Žemva B. On the Synthesis of Xenon(II) Fluorostannates(IV). J. Fluorine Chem. 1986, 34 (2), 233–239. 10.1016/S0022-1139(00)85073-3. DOI

Žemva B.; Jesih A.; Templeton D. H.; Zalkin A.; Cheetham A. K.; Bartlett N. Phases in the System XeF2/XeF5AsF6 and Structural and Vibrational Evidence for the Following Ionization Pathway: XeF2 → XeF+ + F–. J. Am. Chem. Soc. 1987, 109 (24), 7420–7427. 10.1021/ja00258a028. DOI

Higelin A.; Riedel S.. High Oxidation States in Transition Metal Fluorides. In Modern Synthesis Processes and Reactivity of Fluorinated Compounds; Groult H., Leroux F. R., Tressaud A., Eds.; Progress in Fluorine Science; Elsevier: Amsterdam, 2017; pp 561–586.

Palatinus L.; Petříček V.; Corrêa C. A. Structure Refinement Using Precession Electron Diffraction Tomography and Dynamical Diffraction: Theory and Implementation. Acta Crystallogr. A 2015, 71 (2), 235–244. 10.1107/S2053273315001266. PubMed DOI

Palatinus L.; Corrêa C. A.; Steciuk G.; Jacob D.; Roussel P.; Boullay P.; Klementová M.; Gemmi M.; Kopeček J.; Domeneghetti M. C.; Cámara F.; Petříček V. Structure Refinement Using Precession Electron Diffraction Tomography and Dynamical Diffraction: Tests on Experimental Data. Acta Crystallogr. B 2015, 71 (6), 740–751. 10.1107/S2052520615017023. PubMed DOI

Wang Y.; Yang T.; Xu H.; Zou X.; Wan W. On the Quality of the Continuous Rotation Electron Diffraction Data for Accurate Atomic Structure Determination of Inorganic Compounds. J. Appl. Crystallogr. 2018, 51 (4), 1094–1101. 10.1107/S1600576718007604. DOI

Palatinus L.; Brázda P.; Jelínek M.; Hrdá J.; Steciuk G.; Klementová M. Specifics of the Data Processing of Precession Electron Diffraction Tomography Data and Their Implementation in the Program PETS2.0. Acta Crystallogr. B 2019, 75 (4), 512–522. 10.1107/S2052520619007534. PubMed DOI

Brázda P.; Klementová M.; Krysiak Y.; Palatinus L. Accurate Lattice Parameters from 3D Electron Diffraction Data. I. Optical Distortions. IUCrJ 2022, 9 (6), 735–755. 10.1107/S2052252522007904. PubMed DOI PMC

Hattne J.; Shi D.; Glynn C.; Zee C.-T.; Gallagher-Jones M.; Martynowycz M. W.; Rodriguez J. A.; Gonen T. Analysis of Global and Site-Specific Radiation Damage in Cryo-EM. Structure 2018, 26 (5), 759–766. 10.1016/j.str.2018.03.021. PubMed DOI PMC

Saha A.; Nia S. S.; Rodríguez J. A. Electron Diffraction of 3D Molecular Crystals. Chem. Rev. 2022, 122 (17), 13883–13914. 10.1021/acs.chemrev.1c00879. PubMed DOI PMC

Zupanek Ž.; Tramšek M.; Kokalj A.; Tavčar G. Reactivity of VOF3 with N-Heterocyclic Carbene and Imidazolium Fluoride: Analysis of Ligand–VOF3 Bonding with Evidence of a Minute π Back-Donation of Fluoride. Inorg. Chem. 2018, 57 (21), 13866–13879. 10.1021/acs.inorgchem.8b02377. PubMed DOI

Jensen W. B.Crystal Coordination Formulas: A Flexible Notation for the Interpretation of Solid-State Structures. In The Structures of Binary Compounds; Hafner, J., Hulliger, F., Jensen, W. B., Majewski, J. A., Mathis, K., Villars, P., Vogl, P., Eds.; Cohesion and Structure; de Boer F. R., Pettifor D. G., Eds.; North-Holland: Amsterdam, 1989; Vol. 2, pp 105–146.

Elliott H. St. A.; Lehmann J. F.; Mercier H. P. A.; Jenkins H. D. B.; Schrobilgen G. J. X-Ray Crystal Structures of [XeF][MF6] (M = As, Sb, Bi), [XeF][M2F11] (M = Sb, Bi) and Estimated Thermochemical Data and Predicted Stabilities for Noble-Gas Fluorocation Salts Using Volume-Based Thermodynamics. Inorg. Chem. 2010, 49 (18), 8504–8523. 10.1021/ic101152x. PubMed DOI

Cohen S.; Selig H.; Gut R. The Structure of H3O+TiF5–. J. Fluorine Chem. 1982, 20 (3), 349–356. 10.1016/S0022-1139(00)82227-7. DOI

Morrell B. K.; Zalkin A.; Tressaud A.; Bartlett N. Crystal Structure of Rhodium Pentafluoride. Inorg. Chem. 1973, 12 (11), 2640–2644. 10.1021/ic50129a029. DOI

Shlyapnikov I. M.; Mercier H. P. A.; Goreshnik E. A.; Schrobilgen G. J.; Mazej Z. Crystal Structures and Raman Spectra of Imidazolium Poly[Perfluorotitanate(IV)] Salts Containing the [TiF6]2–, ([Ti2F9]−)∞, and [Ti2F11]3– and the New [Ti4F20]4– and [Ti5F23]3– Anions. Inorg. Chem. 2013, 52 (15), 8315–8326. 10.1021/ic302468j. PubMed DOI

Leitz D.; Nitzer A.; Morgenstern Y.; Zischka F.; Kornath A. J. Structural Investigation of Thiourea Dioxide in Superacids. Eur. J. Inorg. Chem. 2019, (6), 808–812. 10.1002/ejic.201801298. DOI

Scheibe B.; Karttunen A. J.; Kraus F. Reactions of ClF3 with Main Group and Transition Metal Oxides: Access to Dioxychloronium(V) Fluoridometallates and Oxidofluoridometallates. Eur. J. Inorg. Chem. 2021, (4), 405–421. 10.1002/ejic.202000908. DOI

Müller B. G. Zur kenntnis von [O2]+[Mn2F9]−. J. Fluorine Chem. 1981, 17 (5), 409–421. 10.1016/S0022-1139(00)82245-9. DOI

Christe K. O.; Schack C. J. Synthesis and Characterization of Bis(Perfluoroammonium) Hexafluorotitanate and of Higher Perfluoroammonium(1+) and Cesium(1+) Poly(Perfluorotitanate(IV)) Salts. Inorg. Chem. 1977, 16 (2), 353–359. 10.1021/ic50168a026. DOI

Agron P. A.; Begun G. M.; Levy H. A.; Mason A. A.; Jones C. G.; Smith D. F. Xenon Difluoride and the Nature of the Xenon-Fluorine Bond. Science 1963, 139 (3557), 842–844. 10.1126/science.139.3557.842. PubMed DOI

Frlec B.; Holloway J. H. The XeF2–MF5 (M = Sb, Ta, or Nb) Systems: Vibrational Spectra of Solid Xenon Difluoride Adducts. J. Chem. Soc., Dalton Trans. 1975, (6), 535–540. 10.1039/DT9750000535. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...