Chlorfenapyr Crystal Polymorphism and Insecticidal Activity

. 2024 Feb 07 ; 24 (3) : 1284-1292. [epub] 20240117

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38344671

Four crystalline polymorphs of the proinsecticide chlorfenapyr [4-bromo-2-(4-chlorophenyl)-1-ethoxymethyl-5-trifluoromethyl-1H-pyrrole-3-carbonitrile] have been identified and characterized by polarized light optical microscopy, differential scanning calorimetry, Raman spectroscopy, X-ray diffraction, and electron diffraction. Three of the four structures were considered polytypic. Chlorfenapyr polymorphs show similar lethality against fruit flies (Drosophila melanogaster) and mosquitoes (Anopheles quadrimaculatus) with the least stable polymorph showing slightly higher lethality. Similar activities may be expected to be consistent with structural similarities. Knockdown kinetics, however, depend on an internal metabolic activating step, which further complicates polymorph-dependent bioavailability.

Zobrazit více v PubMed

Feyereisen R. Molecular biology of insecticide resistance. Toxicol. Lett. 1995, 82, 83–90. 10.1016/0378-4274(95)03470-6. PubMed DOI

Zaim M.; Guillet P. Alternative insecticides: An urgent need. Trends Parasitol. 2002, 18, 161–163. 10.1016/S1471-4922(01)02220-6. PubMed DOI

Ranson H.; N’Guessan R.; Lines J.; Moiroux N.; Nkuni Z.; Corbel V. Pyrethroid resistance in African anopheline mosquitoes: What are the implications for malaria control?. Trends Parasitol. 2011, 27, 91–98. 10.1016/j.pt.2010.08.004. PubMed DOI

Darriet F. V.; Tho Vien N.; Robert V.; Carnevale P.. Evaluation of the efficacy of permethrin impregnated intact and perforated mosquito nets against vectors of malaria; World Health Organization: Geneva, 1984, WHO/VBC/84899, WHO/MAL/84.1008.

Control of Neglected Tropical Diseases (NTD). Report of the twentieth WHOPES working group meeting WHO/HQ, Geneva 20–24 March 2017; Yadav R. S., Ed.; World Health Organization, 2017. https://www.who.int/publications/i/item/who-htm-ntd-whopes-2017.04 (accessed 2023-12-18).

Raghavendra K.; Barik T. K.; Sharma P.; Bhatt R. M.; Srivastava H. C.; Sreehari U.; Dash A. P. Chlorfenapyr: A new insecticide with novel mode of action can control pyrethroid resistant malaria vectors. Malaria J. 2011, 10, 16.10.1186/1475-2875-10-16. PubMed DOI PMC

Silver K. S.; Du Y.; Nomura Y.; Oliveira E. E.; Salgado V. L.; Zhorov B. S.; Dong K. Voltage-gated sodium channels as insecticide targets. Adv. Insect Physiol. 2014, 46, 389–433. 10.1016/B978-0-12-417010-0.00005-7. PubMed DOI PMC

Soderlund D. M.; Knipple D. C. The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochem. Mol. Biol. 2003, 33, 563–577. 10.1016/S0965-1748(03)00023-7. PubMed DOI

Ngufor C.; Critchley J.; Fagbohoun J.; N’Guessan R.; Todjinou D.; Rowland M. Chlorfenapyr (a pyrrole insecticide) applied alone or as a mixture with alpha-cypermethrin for indoor residual spraying against pyrethroid resistant anopheles gambiae Sl: An experimental hut study in Cove, Benin. PLoS One 2016, 11 (9), e016221010.1371/journal.pone.0162210. PubMed DOI PMC

Zahouli J. Z. B.; Edi C. A. V.; Yao L. A.; Lisro E. G.; Adou M.; Koné I.; Small G.; Sternberg E. D.; Koudou B. G. Small-scale field evaluation of PermaNet® Dual (a long-lasting net coated with a mixture of chlorfenapyr and deltamethrin) against pyrethroid-resistant Anopheles gambiae mosquitoes from Tiassalé, Côte d’Ivoire. Malaria J. 2023, 22, 36.10.1186/s12936-023-04455-z. PubMed DOI PMC

N’Guessan R.; Odjo A.; Ngufor C.; Malone D.; Rowland M. A chlorfenapyr mixture net Interceptor® G2 shows high efficacy and wash durability against resistant mosquitoes in West Africa. PLoS One 2016, 11 (11), e016592510.1371/journal.pone.0165925. PubMed DOI PMC

Niu X.; Yang R.; Zhang H.; Yang J. Crystal engineering in the development of improved pesticide products. Adv. Agrochem. 2022, 1, 39–60. 10.1016/j.aac.2022.09.001. DOI

Erriah B.; Zhu X.; Hu C. T.; Kahr B.; Shtukenberg A.; Ward M. D. Crystallography of contemporary contact insecticides. Insects 2022, 13, 292.10.3390/insects13030292. PubMed DOI PMC

Yang J.; Hu C. T.; Zhu X.; Zhu Q.; Ward M. D.; Kahr B. DDT polymorphism and the lethality of crystal forms. Angew. Chem., Int. Ed. Engl. 2017, 56, 10165–10169. 10.1002/anie.201703028. PubMed DOI

Yang J.; Zhu X.; Hu C. T.; Qiu M.; Zhu Q.; Ward M. D.; Kahr B. Inverse correlation between lethality and thermodynamic stability of contact insecticide polymorphs. Cryst. Growth Des. 2019, 19, 1839–1844. 10.1021/acs.cgd.8b01800. DOI

Yang J.; Erriah B.; Hu C. T.; Reiter E.; Zhu X.; López-Mejías V.; Carmona-Sepúlveda I. P.; Ward M. D.; Kahr B. A deltamethrin crystal polymorph for more effective malaria control. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 26633–26638. 10.1073/pnas.2013390117. PubMed DOI PMC

Carson J.; Erriah B.; Herodotou S.; Shtukenberg A. G.; Smith L.; Ryazanskaya S.; Ward M. D.; Kahr B.; Lees R. S. Overcoming insecticide resistance in Anopheles mosquitoes by using faster-acting solid forms of deltamethrin. Malaria J. 2023, 22, 129.10.1186/s12936-023-04554-x. PubMed DOI PMC

Zhu X.; Hu C. T.; Erriah B.; Vogt-Maranto L.; Yang J.; Yang Y.; Qiu M.; Fellah N.; Tuckerman M. E.; Ward M. D.; Kahr B. Imidacloprid crystal polymorphs for disease vector control and pollinator protection. J. Am. Chem. Soc. 2021, 143, 17144–17152. 10.1021/jacs.1c07610. PubMed DOI

Sheldrick G. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr. A 2015, A71, 3–8. 10.1107/S2053273314026370. PubMed DOI PMC

Sheldrick G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, 71 (1), 3–8. 10.1107/S2053229614024218. PubMed DOI PMC

XPREP version 2014/2; Bruker AXS Inc: Madison, WI, 2014.

Dolomanov O. V.; Bourhis L. J.; Gildea R. J.; Howard J. A. K.; Puschmann H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. 10.1107/S0021889808042726. DOI

Palatinus L.; Brázda P.; Jelínek M.; Hrdá J.; Steciuk G.; Klementová M. Specifics of the data processing of precession electron diffraction tomography data and their implementation in the program PETS2.0. Acta Crystallogr. B 2019, B75, 512–522. 10.1107/S2052520619007534. PubMed DOI

Brázda P.; Krysiak Y.; Klementová M.; Palatinus L. Accurate lattice parameters from 3D electron diffraction data. I. Optical distortions. IUCrJ. 2022, 9, 735–755. 10.1107/S2052252522007904. PubMed DOI PMC

Palatinus L.; Chapuis G. SUPERFLIP - a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 2007, 40, 786–790. 10.1107/S0021889807029238. DOI

Burla M. C.; Caliandro R.; Carrozzini B.; Cascarano G. L.; Cuocci C.; Giacovazzo C.; Mallamo M.; Mazzone A.; Polidori G. Crystal structure determination and refinement via SIR2014. J. Appl. Crystallogr. 2015, 48, 306–309. 10.1107/S1600576715001132. DOI

Petříček V.; Palatinus L.; Plášil J.; Dušek M. Jana2020 - a new version of the crystallographic computing system Jana. Z. Kristallogr. 2023, 238 (7–8), 271–282. 10.1515/zkri-2023-0005. DOI

Palatinus L.; Petříček V.; Correa C. A. Structure refinement using precession electron diffraction tomography and dynamical diffraction: Theory and implementation. Acta Crystallogr. A 2015, A71, 235–244. 10.1107/S2053273315001266. PubMed DOI

Klar P. B.; Krysiak Y.; Xu H.; Steciuk G.; Cho J.; Zou X.; Palatinus L. Accurate structure models and absolute configuration determination using dynamical effects in continuous-rotation 3D electron diffraction data. Nat. Chem. 2023, 15, 848–855. 10.1038/s41557-023-01186-1. PubMed DOI PMC

Zhao Y.; Mao C.; Li Y.; Zhang P.; Huang Z.; Bi F.; Huang R.; Wang Q. Synthesis, crystal structure and insecticidal activity of novel N-alkyloxyoxalyl derivatives of 2-arylpyrrole. J. Agr. Food. Chem. 2008, 56, 7326–7332. 10.1021/jf801311h. PubMed DOI

Li Y.; Zhang P.; Ma Q.; Song H.; Liu Y.; Wang Q. The trifluoromethyl transformation synthesis, crystal structure and insecticidal activities of novel 2-pyrrolecarboxamide and 2-pyrrolecarboxlate. Bioorg. Medicin. Chem. Lett. 2012, 22, 6858–6861. 10.1016/j.bmcl.2012.09.036. PubMed DOI

Xi H.; Sun Y.; Yu L. Diffusion-controlled and diffusionless crystal growth in liquid o-terphenyl near its glass transition temperature. J. Chem. Phys. 2009, 130, 094508.10.1063/1.3081047. PubMed DOI

Shtukenberg A.; Freundenthal J.; Gunn E.; Yu L.; Kahr B. Glass-crystal growth mode for testosterone propionate. Cryst. Growth Des. 2011, 11, 4458–4462. 10.1021/cg200640g. DOI

Mapossa A. B.; Moyo D.; Wesley-Smith J.; Focke W. W.; Androsch R. Blooming of chlorfenapyr from polyethylene films. AIP Conf. Proc. 2020, 2289, 020036.10.1063/5.0028438. DOI

Mapossa A. B.; Sibanda M. M.; Moyo D.; Kruger T.; Focke W. W.; Androsch R.; Boldt R.; Wesley-Smith J. Blooming of insecticides from polyethylene mesh and film. Trans. Royal Soc. South Africa 2021, 76, 127–136. 10.1080/0035919X.2021.1900950. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...