Refining short-range order parameters from the three-dimensional diffuse scattering in single-crystal electron diffraction data
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
G035619N
The research leading to these results has received funding from the Research Foundation Flanders (FWO Vlaanderen)
G040116N
The research leading to these results has received funding from the Research Foundation Flanders (FWO Vlaanderen)
PubMed
38096038
PubMed Central
PMC10833392
DOI
10.1107/s2052252523010254
PII: S2052252523010254
Knihovny.cz E-zdroje
- Klíčová slova
- 3D difference pair distribution functions, 3D electron diffraction, 3D-ΔPDF, 3DED, single-crystal diffuse scattering,
- Publikační typ
- časopisecké články MeSH
Our study compares short-range order parameters refined from the diffuse scattering in single-crystal X-ray and single-crystal electron diffraction data. Nb0.84CoSb was chosen as a reference material. The correlations between neighbouring vacancies and the displacements of Sb and Co atoms were refined from the diffuse scattering using a Monte Carlo refinement in DISCUS. The difference between the Sb and Co displacements refined from the diffuse scattering and the Sb and Co displacements refined from the Bragg reflections in single-crystal X-ray diffraction data is 0.012 (7) Å for the refinement on diffuse scattering in single-crystal X-ray diffraction data and 0.03 (2) Å for the refinement on the diffuse scattering in single-crystal electron diffraction data. As electron diffraction requires much smaller crystals than X-ray diffraction, this opens up the possibility of refining short-range order parameters in many technologically relevant materials for which no crystals large enough for single-crystal X-ray diffraction are available.
Aarhus University Department of Chemistry and iNANO Langelandsgade 140 8000 Aarhus Denmark
Czech Academy of Sciences Department of Structure Analysis Na Slovance 2 182 21 Prague Czechia
University of Antwerp Department of Physics Groenenborgerlaan 171 B 2020 Antwerp Belgium
University of Oxford Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR United Kingdom
Zobrazit více v PubMed
Arnold, O., Bilheux, J. C., Borreguero, J. M., Buts, A., Campbell, S. I., Chapon, L., Doucet, M., Draper, N., Ferraz Leal, R., Gigg, M. A., Lynch, V. E., Markvardsen, A., Mikkelson, D. J., Mikkelson, R. L., Miller, R., Palmen, K., Parker, P., Passos, G., Perring, T. G., Peterson, P. F., Ren, S., Reuter, M. A., Savici, A. T., Taylor, J. W., Taylor, R. J., Tolchenov, R., Zhou, W. & Zikovsky, J. (2014). Nucl. Instrum. Methods Phys. Res. A, 764, 156–166.
Brázda, P., Palatinus, L., Drahokoupil, J., Knížek, K. & Buršík, J. (2016). J. Phys. Chem. Solids, 96–97, 10–16.
Fujii, Y., Miura, H., Suzuki, N., Shoji, T. & Nakayama, N. (2007). Solid State Ionics, 178, 849–857.
Gemmi, M., Mugnaioli, E., Gorelik, T. E., Kolb, U., Palatinus, L., Boullay, P., Hovmöller, S. & Abrahams, J. P. (2019). ACS Cent. Sci. 5, 1315–1329. PubMed PMC
Goodwin, A. L., Withers, R. L. & Nguyen, H. B. (2007). J. Phys. Condens. Matter, 19, 335216. PubMed
Gorelik, T. E., Bekő, S. L., Teteruk, J., Heyse, W. & Schmidt, M. U. (2023). Acta Cryst. B79, 122–137. PubMed PMC
Klar, P. B., Krysiak, Y., Xu, H., Steciuk, G., Cho, J., Zou, X. & Palatinus, L. (2023). Nat. Chem. 15, 848–855. PubMed PMC
Kolb, U., Gorelik, T., Kübel, C., Otten, M. T. & Hubert, D. (2007). Ultramicroscopy, 107, 507–513. PubMed
Kolb, U., Gorelik, T. & Otten, M. T. (2008). Ultramicroscopy, 108, 763–772. PubMed
Krysiak, Y., Barton, B., Marler, B., Neder, R. B. & Kolb, U. (2018). Acta Cryst. A74, 93–101. PubMed
Krysiak, Y., Marler, B., Barton, B., Plana-Ruiz, S., Gies, H., Neder, R. B. & Kolb, U. (2020). IUCrJ, 7, 522–534. PubMed PMC
Neagu, A. & Tai, C. W. (2017). Sci. Rep. 7, 1–12. PubMed PMC
Neder, R. B. & Proffen, T. (2008). Diffuse Scattering and Defect Structure Simulations: a Cook Book using the Program DISCUS. Oxford University Press.
Paddison, J. A. M. (2019). Acta Cryst. A75, 14–24. PubMed
Palatinus, L., Brázda, P., Jelínek, M., Hrdá, J., Steciuk, G. & Klementová, M. (2019). Acta Cryst. B75, 512–522. PubMed
Palatinus, L., Corrêa, C. A., Steciuk, G., Jacob, D., Roussel, P., Boullay, P., Klementová, M., Gemmi, M., Kopeček, J., Domeneghetti, M. C., Cámara, F. & Petříček, V. (2015). Acta Cryst. B71, 740–751. PubMed
Palatinus, L., Jacob, D., Cuvillier, P., Klementová, M., Sinkler, W. & Marks, L. D. (2013). Acta Cryst. A69, 171–188. PubMed
Palatinus, L., Petříček, V. & Corrêa, C. A. (2015). Acta Cryst. A71, 235–244. PubMed
Petříček, V., Palatinus, L., Plášil, J. & Dušek, M. (2023). Z. Kristallogr. Cryst. Mater., 238, 271–282.
Poppe, R. (2023a). Monte Carlo models of the Nb-vacancy order in Nb0.84CoSb. https://doi.org/10.5281/zenodo.10073189.
Poppe, R. (2023b). Monte Carlo refinement on single-crystal X-ray diffraction data acquired on Nb0.84CoSb https://doi.org/10.5281/zenodo.8212024.
Poppe, R. (2023c). Script to convert the intensities in a .h5 file to a .inte file https://doi.org/10.5281/zenodo.8212162.
Poppe, R. (2023d). Three-dimensional diffuse scattering. https://doi.org/10.5281/zenodo.10073528.
Poppe, R., Vandemeulebroucke, D., Neder, R. B. & Hadermann, J. (2022). IUCrJ, 9, 695–704. PubMed PMC
Price, K., Storn, R. M. & Lampinen, J. A. (2005). Differential Evolution: a Practical Approach to Global Optimization. Springer Science and Business Media.
Proffen, T. & Welberry, T. R. (1998). Phase Transit. 67, 373–397.
Proffen, Th. & Neder, R. B. (1997). J. Appl. Cryst. 30, 171–175.
Roth, N., Beyer, J., Fischer, K. F. F., Xia, K., Zhu, T. & Iversen, B. B. (2021). IUCrJ, 8, 695–702. PubMed PMC
Roth, N., Zhu, T. & Iversen, B. B. (2020). IUCrJ, 7, 673–680. PubMed PMC
Schaub, P., Weber, T. & Steurer, W. (2007). Philos. Mag. 87, 2781–2787.
Schmidt, E. M., Klar, P. B., Krysiak, Y., Svora, P., Goodwin, A. L. & Palatinus, L. (2023). Nat. Commun. 14, 6512. PubMed PMC
Schmidt, E. M., Neder, R. B., Martin, J. D., Minelli, A., Lemée, M.-H. & Goodwin, A. L. (2023). Acta Cryst. B79, 138–147. PubMed PMC
Simonov, A., Weber, T. & Steurer, W. (2014). J. Appl. Cryst. 47, 1146–1152.
Warren, B. E., Averbach, B. L. & Roberts, B. W. (1951). J. Appl. Phys. 22, 1493–1496.
Weber, T. & Simonov, A. (2012). Z. Kristallogr. 227, 238–247.
Welberry, T. R. (1985). Rep. Prog. Phys. 48, 1543–1594.
Welberry, T. R. & Weber, T. (2016). Crystallogr. Rev. 22, 2–78.
Withers, R. L., Welberry, T. R., Brink, F. J. & Norén, L. (2003). J. Solid State Chem. 170, 211–220.
Withers, R. L., Welberry, T. R., Larsson, A. K., Liu, Y., Norén, L., Rundlöf, H. & Brink, F. J. (2004). J. Solid State Chem. 177, 231–244.
Xia, K., Nan, P., Tan, S., Wang, Y., Ge, B., Zhang, W., Anand, S., Zhao, X., Snyder, G. J. & Zhu, T. (2019). Energy Environ. Sci. 12, 1568–1574.
Yu, J., Fu, C., Liu, Y., Xia, K., Aydemir, U., Chasapis, T. C., Snyder, G. J., Zhao, X. & Zhu, T. (2018). Adv. Energy Mater. 8, 1–8.
Zeier, W. G., Anand, S., Huang, L., He, R., Zhang, H., Ren, Z., Wolverton, C. & Snyder, G. J. (2017). Chem. Mater. 29, 1210–1217.
Zhao, H., Krysiak, Y., Hoffmann, K., Barton, B., Molina-Luna, L., Neder, R. B., Kleebe, H. J., Gesing, T. M., Schneider, H., Fischer, R. X. & Kolb, U. (2017). J. Solid State Chem. 249, 114–123.