Quantitative three-dimensional local order analysis of nanomaterials through electron diffraction

. 2023 Oct 16 ; 14 (1) : 6512. [epub] 20231016

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37845256
Odkazy

PubMed 37845256
PubMed Central PMC10579245
DOI 10.1038/s41467-023-41934-y
PII: 10.1038/s41467-023-41934-y
Knihovny.cz E-zdroje

Structure-property relationships in ordered materials have long been a core principle in materials design. However, the introduction of disorder into materials provides structural flexibility and thus access to material properties that are not attainable in conventional, ordered materials. To understand disorder-property relationships, the disorder - i.e., the local ordering principles - must be quantified. Local order can be probed experimentally by diffuse scattering. The analysis is notoriously difficult, especially if only powder samples are available. Here, we combine the advantages of three-dimensional electron diffraction - a method that allows single crystal diffraction measurements on sub-micron sized crystals - and three-dimensional difference pair distribution function analysis (3D-ΔPDF) to address this problem. In this work, we compare the 3D-ΔPDF from electron diffraction data with those obtained from neutron and x-ray experiments of yttria-stabilized zirconia (Zr0.82Y0.18O1.91) and demonstrate the reliability of the proposed approach.

Zobrazit více v PubMed

Simonov A, Goodwin AL. Designing disorder into crystalline materials. Nat. Rev. Chem. 2020;4:657–673. PubMed

Senn M, Keen D, Lucas T, Hriljac J, Goodwin A. Emergence of long-range order in BaTiO 3 from local symmetry-breaking distortions. Phys. Rev. Lett. 2016;116:207602. PubMed

Perversi G, et al. Co-emergence of magnetic order and structural fluctuations in magnetite. Nat. Commun. 2019;10:2857. PubMed PMC

Weller MT, Weber OJ, Henry PF, Di Pumpo AM, Hansen TC. Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 K. Chem. Commun. 2015;51:4180–4183. PubMed

Zhu X, et al. A crystal-chemical framework for relaxor versus normal ferroelectric behavior in tetragonal tungsten bronzes. Chem. Mater. 2015;27:3250–3261.

Paściak M, Welberry TR, Kulda J, Kempa M, Hlinka J. Polar nanoregions and diffuse scattering in the relaxor ferroelectric PbMg 1 / 3 Nb 2 / 3 O 3. Phys. Rev. B. 2012;85:224109.

Battle PD, Evers SI, Hunter EC, Westwood M. La 3 Ni 2 SbO 9: a Relaxor Ferromagnet. Inorg. Chem. 2013;52:6648–6653. PubMed

Sartbaeva A, Wells SA, Thorpe MF, Božin ES, Billinge SJL. Quadrupolar Ordering in LaMnO 3 Revealed from Scattering Data and Geometric Modeling. Phys. Rev. Lett. 2007;99:155503. PubMed

Sangiorgio B, et al. Correlated local dipoles in PbTe. Phys. Rev. Mater. 2018;2:085402.

Keen DA, Goodwin AL. The crystallography of correlated disorder. Nature. 2015;521:303–309. PubMed

Welberry TR, Weber T. One hundred years of diffuse scattering. Crystallogr. Rev. 2016;22:2–78.

Proffen T, Billinge S, Egami T, Louca D. Structural analysis of complex materials using the atomic pair distribution function—A practical guide. Z. F.ür. Krist. -Cryst. Mater. 2003;218:132–143.

Keen DA. Total scattering and the pair distribution function in crystallography. Crystallogr. Rev. 2020;26:141–199.

Mu X, Wang D, Feng T, Kübel C. Radial distribution function imaging by STEM diffraction: Phase mapping and analysis of heterogeneous nanostructured glasses. Ultramicroscopy. 2016;168:1–6. PubMed

Gorelik TE, Schmidt MU, Kolb U, Billinge SJL. Total-scattering pair-distribution function of organic material from powder electron diffraction data. Microsc. Microanal. 2015;21:459–471. PubMed

Gorelik TE, et al. Towards quantitative treatment of electron pair distribution function. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2019;75:532–549. PubMed

Welberry, T. R. Diffuse X-ray scattering and models of disorder. Vol. 31 (Oxford University Press, 2022).

Neder, R. B. & Proffen, T. Diffuse Scattering and Defect Structure Simulations A Cook Book Using the Program DISCUS. (2008).

Nield, V. M. & Keen, D. A. Diffuse neutron scattering from crystalline materials. vol. 14 (Oxford University Press, 2001).

Weber T, Simonov A. The three-dimensional pair distribution function analysis of disordered single crystals: Basic concepts. Z. Krist. 2012;227:238–247.

Roth N, Iversen BB. Solving the disordered structure of β-Cu2- xSe using the three-dimensional difference pair distribution function. Acta Crystallogr. Sect. Found. Adv. 2019;75:465–473. PubMed

Simonov A, Weber T, Steurer W. Yell: a computer program for diffuse scattering analysis via three-dimensional delta pair distribution function refinement. J. Appl. Crystallogr. 2014;47:1146–1152.

Schmidt E, et al. Direct interpretation of the X-ray and neutron three-dimensional difference pair distribution functions (3D-ΔPDFs) of yttria-stabilized zirconia. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2023;79:0–0. PubMed PMC

Krogstad MJ, et al. Reciprocal space imaging of ionic correlations in intercalation compounds. Nat. Mater. 2020;19:63–68. PubMed

Guérin L, et al. Elucidating 2D charge-density-wave atomic structure in an mx–chain by the 3d-δpair distribution function method. ChemPhysChem. 2022;23:e202100857. PubMed

Meekel EG, et al. Truchet-tile structure of a topologically aperiodic metal–organic framework. Science. 2023;379:357–361. PubMed

Simonov A, Weber T, Steurer W. Experimental uncertainties of three-dimensional pair distribution function investigations exemplified on the diffuse scattering from a tris-tert-butyl-1,3,5-benzene tricarboxamide single crystal. J. Appl. Crystallogr. 2014;47:2011–2018.

Gemmi M, et al. 3D electron diffraction: the nanocrystallography revolution. ACS Cent. Sci. 2019;5:1315–1329. PubMed PMC

Gruene T, Holstein JJ, Clever GH, Keppler B. Establishing electron diffraction in chemical crystallography. Nat. Rev. Chem. 2021;5:660–668. PubMed

Brink FJ, Withers RL, Norén L. An electron diffraction and crystal chemical investigation of oxygen/fluorine ordering in niobium oxyfluoride, NbO2F. J. Solid State Chem. 2002;166:73–80.

Withers RL. A modulation wave approach to the order hidden in disorder. IUCrJ. 2015;2:74–84. PubMed PMC

Withers R, Thompson J, Xiao Y, Kirkpatrick R. An electron diffraction study of the polymorphs of SiO 2-tridymite. Phys. Chem. Miner. 1994;21:421–433.

Withers RL, Welberry TR, Brink FJ, Norén L. Oxygen/fluorine ordering, structured diffuse scattering and the local crystal chemistry of K3MoO3F3. J. Solid State Chem. 2003;170:211–220.

Poppe R, Vandemeulebroucke D, Neder RB, Hadermann J. Quantitative analysis of diffuse electron scattering in the lithium-ion battery cathode material Li 1.2 Ni 0.13 Mn 0.54 Co 0.13 O 2. IUCrJ. 2022;9:695–704. PubMed PMC

Krysiak Y, Barton B, Marler B, Neder RB, Kolb U. Ab initio structure determination and quantitative disorder analysis on nanoparticles by electron diffraction tomography. Acta Crystallogr. Sect. Found. Adv. 2018;74:93–101. PubMed

Krysiak Y, et al. New zeolite-like RUB-5 and its related hydrous layer silicate RUB-6 structurally characterized by electron microscopy. IUCrJ. 2020;7:522–534. PubMed PMC

Welberry T, Butler B, Thompson J, Withers R. A 3D model for the diffuse scattering in cubic stabilized zirconias. J. Solid State Chem. 1993;106:461–475.

Frey F, Boysen H, Kaiser-Bischoff I. Diffuse scattering and disorder in zirconia. Z. Krist. 2005;220:1017–1026.

Fèvre M, Finel A, Caudron R. Local order and thermal conductivity in yttria-stabilized zirconia. I. Microstructural investigations using neutron diffuse scattering and atomic-scale simulations. Phys. Rev. B. 2005;72:104117.

Khan MS, Islam MS, Bates DR. Cation doping and oxygen diffusion in zirconia: A combined atomistic simulation and molecular dynamics study. J. Mater. Chem. 1998;8:2299–2307.

Tsampas M, Sapountzi F, Vernoux P. Applications of yttria stabilized zirconia (YSZ) in catalysis. Catal. Sci. Technol. 2015;5:4884–4900.

Vermeij T, Plancher E, Tasan CC. Preventing damage and redeposition during focused ion beam milling: The “umbrella” method. Ultramicroscopy. 2018;186:35–41. PubMed

Goff JP, Hayes W, Hull S, Hutchings MT, Clausen KN. Defect structure of yttria-stabilized zirconia and its influence on the ionic conductivity at elevated temperatures. Phys. Rev. B. 1999;59:14202–14219.

Anderson NH, et al. The defect structure of yttria-stabilized zirconia, studied by quasielastic neutron scattering. Phys. B + C. 1986;136:315–317.

Palatinus L, et al. Hydrogen positions in single nanocrystals revealed by electron diffraction. Science. 2017;355:166–169. PubMed

Klar, P. B. et al. Accurate structure models and absolute configuration determination using dynamical effects in continuous-rotation 3D electron diffraction data. Nat. Chem. 10.1038/s41557-023-01186-1 (2023). PubMed PMC

Simoncic P, et al. Electron crystallography and dedicated electron-diffraction instrumentation. Acta Crystallogr. Sect. E Crystallogr. Commun. 2023;79:410–422. PubMed PMC

Wennmacher JTC, et al. 3D-structured supports create complete data sets for electron crystallography. Nat. Commun. 2019;10:3316. PubMed PMC

Teng T. yi & Moffat, K. Primary radiation damage of protein crystals by an intense synchrotron X-ray beam. J. Synchrotron Radiat. 2000;7:313–317. PubMed

Coates CS, Murray CA, Boström HL, Reynolds EM, Goodwin AL. Negative X-ray expansion in cadmium cyanide. Mater. Horiz. 2021;8:1446–1453. PubMed PMC

Mugnaioli E, et al. Electron diffraction on flash-frozen cowlesite reveals the structure of the first two-dimensional natural zeolite. ACS Cent. Sci. 2020;6:1578–1586. PubMed PMC

Palatinus L, Petříček V, Corrêa CA. Structure refinement using precession electron diffraction tomography and dynamical diffraction: theory and implementation. Acta Crystallogr. Sect. Found. Adv. 2015;71:235–244. PubMed

Kolb U, Mugnaioli E, Gorelik T. Automated electron diffraction tomography–a new tool for nano crystal structure analysis. Cryst. Res. Technol. 2011;46:542–554.

Mugnaioli E, Gorelik T, Kolb U. “Ab initio” structure solution from electron diffraction data obtained by a combination of automated diffraction tomography and precession technique. Ultramicroscopy. 2009;109:758–765. PubMed

Spingler B, Schnidrig S, Todorova T, Wild F. Some thoughts about the single crystal growth of small molecules. CrystEngComm. 2012;14:751–757.

Agilent. CrysAlis PRO. (2014).

Simonov, A. Meerkat. https://github.com/aglie/meerkat (2015).

Katcho NA, Cañadillas-Delgado L, Fabelo O, Fernández-Díaz MT, Rodríguez-Carvajal J. Int3D: A Data Reduction Software for Single Crystal Neutron Diffraction. Crystals. 2021;11:897.

Palatinus L, et al. Specifics of the data processing of precession electron diffraction tomography data and their implementation in the program PETS2. 0. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2019;75:512–522. PubMed

Koch, R. J. et al. On single crystal total scattering data reduction and correction protocols for analysis in direct space. 1–21 (2021). PubMed

Weng J, et al. K-space algorithmic reconstruction (KAREN): a robust statistical methodology to separate Bragg and diffuse scattering. J. Appl. Crystallogr. 2020;53:159–169.

Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011;44:1272–1276.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...