Association of human disturbance and gastrointestinal parasite infection of yellow baboons in western Tanzania

. 2022 ; 17 (1) : e0262481. [epub] 20220112

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35020760

Human disturbance is an ongoing threat to many wildlife species, manifesting as habitat destruction, resource overuse, or increased disease exposure, among others. With increasing human: non-human primate (NHP) encounters, NHPs are increasingly susceptible to human-introduced diseases, including those with parasitic origins. As such, epidemiology of parasitic disease is becoming an important consideration for NHP conservation strategies. To investigate the relationship between parasite infections and human disturbance we studied yellow baboons (Papio cynocephalus) living outside of national park boundaries in western Tanzania, collecting 135 fresh faecal samples from nine troops occupying areas with varying levels of human disturbance. We fixed all samples in 10% formalin and later evaluated parasite prevalence and abundance (of isotrichid ciliates and Strongylida). We identified seven protozoan and four helminth taxa. Taxa showed varied relationships with human disturbance, baboon troop size and host age. In four taxa, we found a positive association between prevalence and troop size. We also report a trend towards higher parasite prevalence of two taxa in less disturbed areas. To the contrary, high levels of human disturbance predicted increased abundance of isotrichid ciliates, although no relationship was found between disturbance and Strongylida abundance. Our results provide mixed evidence that human disturbance is associated with NHP parasite infections, highlighting the need to consider monitoring parasite infections when developing NHP conservation strategies.

Zobrazit více v PubMed

Klein SL. Parasite manipulation of the proximate mechanisms that mediate social behavior in vertebrates. Physiol Behav. 2003;79: 441–9. doi: 10.1016/s0031-9384(03)00163-x PubMed DOI

Ghai RR, Fugère V, Chapman CA, Goldberg TL, Davies TJ. Sickness behaviour associated with non-lethal infections in wild primates. Proceedings Biol Sci. 2015;282: 20151436. doi: 10.1098/rspb.2015.1436 PubMed DOI PMC

Smith KF, F. SD, Lafferty KD. Evidence for the Role of Infectious Disease in Species Extinction and Endangerment. Conserv Biol. 2006;20: 1349–1357. doi: 10.1111/j.1523-1739.2006.00524.x PubMed DOI

Hilser H, Ehlers Smith YC, Ehlers Smith DA. Apparent Mortality as a Result of an Elevated Parasite Infection in Presbytis rubicunda. Folia Primatol. 2014;85: 265–276. doi: 10.1159/000363740 PubMed DOI

Schneider-Crease I, Griffin RH, Gomery MA, Bergman TJ, Beehner JC. High mortality associated with tapeworm parasitism in geladas (Theropithecus gelada) in the Simien Mountains National Park, Ethiopia. Am J Primatol. 2017;79: e22684. doi: 10.1002/ajp.22684 PubMed DOI

Gillespie TR. Noninvasive Assessment of Gastrointestinal Parasite Infections in Free-Ranging Primates. Int J Primatol. 2006;27. doi: 10.1007/s10764-006-9086-4 PubMed DOI PMC

Ghai RR, Chapman CA, Omeja PA, Davies TJ, Goldberg TL. Nodule Worm Infection in Humans and Wild Primates in Uganda: Cryptic Species in a Newly Identified Region of Human Transmission. PLoS Negl Trop Dis. 2014;8: e2641. doi: 10.1371/journal.pntd.0002641 PubMed DOI PMC

Papkou A, Gokhale CS, Traulsen A, Schulenburg H. Host–parasite coevolution: why changing population size matters. Zoology. 2016;119: 330–338. doi: 10.1016/j.zool.2016.02.001 PubMed DOI

Howells ME, Pruetz J, Gillespie TR. Patterns of gastro-intestinal parasites and commensals as an index of population and ecosystem health: the case of sympatric western chimpanzees (Pan troglodytes verus) and guinea baboons (Papio hamadryas papio) at Fongoli, Senegal. Am J Primatol. 2011;73: 173–179. doi: 10.1002/ajp.20884 PubMed DOI

Barelli C, Pafčo B, Manica M, Rovero F, Rosà R, Modrý D, et al.. Loss of protozoan and metazoan intestinal symbiont biodiversity in wild primates living in unprotected forests. Sci Rep. 2020;10: 10917. doi: 10.1038/s41598-020-67959-7 PubMed DOI PMC

Chapman CA, Gillespie TR, Goldberg TL. Primates and the Ecology of their Infectious Diseases: How will Anthropogenic Change Affect Host-Parasite Interactions? Evol Anthropol Issues, News, Rev. 2005;14: 134–144. doi: 10.1002/EVAN.20068 DOI

Gillespie TR, Chapman CA, Greiner EC. Effects of logging on gastrointestinal parasite infections and infection risk in African primates. J Appl Ecol. 2005;42: 699–707. doi: 10.1111/j.1365-2664.2005.01049.x DOI

Bhattacharjee S, Kumar V, Chandrasekhar M, Malviya M, Ganswindt A, Ramesh K, et al.. Glucocorticoid Stress Responses of Reintroduced Tigers in Relation to Anthropogenic Disturbance in Sariska Tiger Reserve in India. PLoS One. 2015;10: e0127626. doi: 10.1371/journal.pone.0127626 PubMed DOI PMC

Creel S, Fox JE, Hardy A, Sands J, Garrott B, Peterson RO. Snowmobile Activity and Glucocorticoid Stress Responses in Wolves and Elk. Conserv Biol. 2002;16: 809–814. doi: 10.1046/j.1523-1739.2002.00554.x DOI

Blickley JL, Word KR, Krakauer AH, Phillips JL, Sells SN, Taff CC, et al.. Experimental Chronic Noise Is Related to Elevated Fecal Corticosteroid Metabolites in Lekking Male Greater Sage-Grouse (Centrocercus urophasianus). Saino N, editor. PLoS One. 2012;7: e50462. doi: 10.1371/journal.pone.0050462 PubMed DOI PMC

Cohen S, Kaplan JR, Cunnick JE, Manuck SB, Rabin BS. Chronic Social Stress, Affiliation, and Cellular Immune Response in Nonhuman Primates. Psychol Sci. 1992;3: 301–305. doi: 10.1111/j.1467-9280.1992.tb00677.x DOI

Hussain S, Ram MS, Kumar A, Shivaji S, Umapathy G. Human Presence Increases Parasitic Load in Endangered Lion-Tailed Macaques (Macaca silenus) in Its Fragmented Rainforest Habitats in Southern India. Salice CJ, editor. PLoS One. 2013;8: e63685. doi: 10.1371/journal.pone.0063685 PubMed DOI PMC

Chapman CA, Wasserman MD, Gillespie TR, Speirs ML, Lawes MJ, Saj TL, et al.. Do food availability, parasitism, and stress have synergistic effects on red colobus populations living in forest fragments? Am J Phys Anthropol. 2006;131: 525–534. doi: 10.1002/ajpa.20477 PubMed DOI

Chomitz K. At Loggerheads?: Agricultural Expansion, Poverty Reduction, and Environment in the Tropical Forests. Washington, DC: World Bank; 2007. https://books.google.co.uk/books?hl=en&lr=&id=bIbu—faGGgC&oi=fnd&pg=PR5&dq=africa+forest+fragmentation+driven+by+agriculture&ots=7yXHbqfDAf&sig=l_rqXHJR2BVWfQ7zjuYM7L0medQ#v=onepage&q=africaforestfragmentationdrivenbyagriculture&f=false

Holechek JL, Cibils AF, Bengaly K, Kinyamario JI. Human Population Growth, African Pastoralism, and Rangelands: A Perspective. Rangel Ecol Manag. 2017;70: 273–280. doi: 10.1016/j.rama.2016.09.004 DOI

Tomley FM, Shirley MW. Livestock infectious diseases and zoonoses. Philos Trans R Soc Lond B Biol Sci. 2009;364: 2637–42. doi: 10.1098/rstb.2009.0133 PubMed DOI PMC

Lane-deGraaf KE, Putra IGAA, Wandia IN, Rompis A, Hollocher H, Fuentes A. Human behavior and opportunities for parasite transmission in communities surrounding long-tailed macaque populations in Bali, Indonesia. Am J Primatol. 2014;76: 159–167. doi: 10.1002/ajp.22218 PubMed DOI

Thompson RCA. Parasite zoonoses and wildlife: One health, spillover and human activity. International Journal for Parasitology. Pergamon; 2013. pp. 1079–1088. doi: 10.1016/j.ijpara.2013.06.007 PubMed DOI PMC

Wolfe N, Escalante AA, Karesh WB, Kilbourn A, Spielman A, Lal AA. Wild Primate Populations in Emerging Infectious Disease Research: The Missing Link? Emerg Infect Dis. 1998;4: 149–158. doi: 10.3201/eid0402.980202 PubMed DOI PMC

Sá RM, Petrášová J, Pomajbíková K, Profousová I, Petrželková KJ, Sousa C, et al.. Gastrointestinal symbionts of chimpanzees in Cantanhez National Park, guinea-bissau with respect to habitat fragmentation. Am J Primatol. 2013;75: 1032–1041. doi: 10.1002/ajp.22170 PubMed DOI

Hoffman TS, O’Riain MJ. The Spatial Ecology of Chacma Baboons (Papio ursinus) in a Human-modified Environment. Int J Primatol 2010 322. 2010;32: 308–328. doi: 10.1007/S10764-010-9467-6 DOI

Norton GW, Rhine RJ, Wynn GW, Wynn RD. Baboon Diet: A Five-Year Study of Stability and Variability in the Plant Feeding and Habitat of the Yellow Baboons (Papio cynocephalus) of Mikumi National Park, Tanzania. Folia Primatol. 1987;48: 78–120. doi: 10.1159/000156287 PubMed DOI

Post DG. Feeding behavior of yellow baboons (Papio cynocephalusin) the Amboseli National Park, Kenya. Int J Primatol 1982 34. 1982;3: 403–430. doi: 10.1007/BF02693741 DOI

Weyher AH, Ross C, Semple S. Gastrointestinal Parasites in Crop Raiding and Wild Foraging Papio anubis in Nigeria. Int J Primatol. 2006;27: 1519–1534. doi: 10.1007/s10764-006-9089-1 DOI

Raichlen DA. Ontogeny of limb mass distribution in infant baboons (Papio cynocephalus). J Hum Evol. 2005;49: 452–467. doi: 10.1016/j.jhevol.2005.05.005 PubMed DOI

Gillespie TR, Chapman CA. Prediction of Parasite Infection Dynamics in Primate Metapopulations Based on Attributes of Forest Fragmentation. Conserv Biol. 2006;20: 441–448. doi: 10.1111/j.1523-1739.2006.00290.x PubMed DOI

Patterson JEH, Ruckstuhl KE. Parasite infection and host group size: a meta-analytical review. Parasitology. 2013;140: 803–813. doi: 10.1017/S0031182012002259 PubMed DOI PMC

Sapolsky RM. The influence of social hierarchy on primate health. Science. American Association for the Advancement of Science; 2005. pp. 648–652. doi: 10.1126/science.1106477 PubMed DOI

Alexander RD. The Evolution of Social Behavior. Annu Rev Ecol Syst. 1974;5: 325–383. doi: 10.1146/ANNUREV.ES.05.110174.001545 DOI

Benavides JA, Huchard E, Pettorelli N, King AJ, Brown ME, Archer CE, et al.. From parasite encounter to infection: Multiple-scale drivers of parasite richness in a wild social primate population. Am J Phys Anthropol. 2012;147: 52–63. doi: 10.1002/ajpa.21627 PubMed DOI

Myers BJ, Kuntz RE, Malherbe H. Intestinal Commensals and Parasites of the South African Baboon (Papio cynocephalus). Trans Am Microsc Soc. 1971;90: 80. doi: 10.2307/3224900 PubMed DOI

Hahn NE, Proulx D, Muruthi PM, Alberts S, Altmann J. Gastrointestinal Parasites in Free-Ranging Kenyan Baboons (Papio cynocephalus and P. anubis). Int J Primatol. 2003;24: 271–279. doi: 10.1023/A:1023092915171 DOI

Ebbert MA, McGrew WC, Marchant LF. Differences between chimpanzee and baboon gastrointestinal parasite communities. Parasitology. 2015;142: 958–967. doi: 10.1017/S0031182015000104 PubMed DOI

Müller-Graf CD, Collins DA, Woolhouse ME. Intestinal parasite burden in five troops of olive baboons (Papio cynocephalus anubis) in Gombe Stream National Park, Tanzania. Parasitology. 1996;112–5: 489–97. doi: 10.1017/S0031182000076952 PubMed DOI

Murray S, Stem C, Boudreau B, Goodall J. Intestinal parasites of baboons (Papio cynocephalus anubis) and chimpanzees (Pan troglodytes) in Gombe National Park. J Zoo Wildl Med. 2000;31: 176–8. doi: 10.1638/1042-7260(2000)031[0176:IPOBPC]2.0.CO;2 PubMed DOI

Kalousová B, Piel AK, Pomajbíková K, Modrý D, Stewart FA, Petrželková KJ. Gastrointestinal Parasites of Savanna Chimpanzees (Pan troglodytes schweinfurthii) in Ugalla, Tanzania. Int J Primatol. 2014;35: 463–475. doi: 10.1007/s10764-014-9753-9 DOI

Piel AK, Strampelli P, Greathead E, Hernandez-Aguilar RA, Moore J, Stewart FA. The diet of open-habitat chimpanzees (Pan troglodytes schweinfurthii) in the Issa valley, western Tanzania. J Hum Evol. 2017;112: 57–69. doi: 10.1016/j.jhevol.2017.08.016 PubMed DOI

Makunga JE, Misana SB. The Extent and Drivers of Deforestation and Forest Degradation in Masito-Ugalla Ecosystem, Kigoma Region, Tanzania. Open J For. 2017;07: 285–305. doi: 10.4236/ojf.2017.72018 DOI

Mpasiwakomu AR, Nyomora AMS, Gimbi AA. Diversity and Utilization of Wild Edible Plant Species from the Uvinza Miombo Woodlands, Tanzania. Huria J Open Univ Tanzania. 2017;24: 150–168. Available: https://www.ajol.info/index.php/huria/article/view/175356

Kigwangalla HA. The forest (tongwe west local authority forest reserve) (declaration) order. Gazette of the United Republic of Tanzania: 38(100). Sep 2019: Supplement No. 37.

Poulsen JR, Clark CJ, Smith TB. Seed Dispersal by a Diurnal Primate Community in the Dja Reserve, Cameroon. J Trop Ecol. 2001;17: 787–808. doi: 10.1017/S0266467401001602 DOI

Bradley BJ, Doran-Sheehy DM, Vigilant L. Genetic identification of elusive animals: re-evaluating tracking and nesting data for wild western gorillas. J Zool. 2008;275: 333–340. doi: 10.1111/j.1469-7998.2008.00431.x DOI

Barelli C, Mundry R, Araldi A, Hodges K, Rocchini D, Rovero F. Modeling Primate Abundance in Complex Landscapes: A Case Study From the Udzungwa Mountains of Tanzania. Int J Primatol. 2015;36: 209–226. doi: 10.1007/s10764-015-9815-7 DOI

Vlčková K, Pafčo B, Petrželková KJ, Modrý D, Todd A, Yeoman CJ, et al.. Relationships between gastrointestinal parasite infections and the fecal microbiome in free-ranging western lowland gorillas. Front Microbiol. 2018;9: 1202. doi: 10.3389/fmicb.2018.01202 PubMed DOI PMC

Alvarado-Villalobos MA, Cringoli G, Maurelli MP, Cambou A, Rinaldi L, Barbachano-Guerrero A, et al.. Flotation techniques (FLOTAC and mini-FLOTAC) for detecting gastrointestinal parasites in howler monkeys. Parasit Vectors. 2017;10: 586. doi: 10.1186/s13071-017-2532-7 PubMed DOI PMC

Sheather AL. The Detection of Intestinal Protozoa and Mange Parasites by a Floatation Technique. J Pathol Ther. 1923;36. Available: https://www.cabdirect.org/cabdirect/abstract/19241000112

Pomajbíková K, Modrý D. Principles and limits of microscopic parasite identification. In: Modrý D, Pafčo B, Petrželková K, Hasegawa H, editors. Parasites of Apes: An Atlas of Coproscopic Diagnostics. Frankfurt: Chimaira; 2018. p. 20. doi: 10.1016/j.exppara.2018.06.009 DOI

Pafčo B, Benavides JA, Pšenková-Profousová I, Modrý D, Červená B, Shutt KA, et al.. Do habituation, host traits and seasonality have an impact on protist and helminth infections of wild western lowland gorillas? Parasitol Res. 2017;116: 3401–3410. doi: 10.1007/s00436-017-5667-8 PubMed DOI

Modrý D, Šlapeta J. Parasites of non-human apes as zoonotic agents. In: Modrý D, Pafčo B, Petrželková K, Hasegawa H, editors. Parasites of Apes: An Atlas of Coproscopic Diagnostics. Frankfurt: Chimaira; 2018. pp. 83–86.

R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2013.

Bates D, Mächler M, Bolker BM, Walker SC. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67: 1–48. doi: 10.18637/jss.v067.i01 DOI

Jirku-Pomajbikova K, Čepicka I, Kalousova B, Jirka M, Stewart F, Levecke B, et al.. Molecular identification of Entamoeba species in savanna woodland chimpanzees (Pan troglodytes schweinfurthii). Parasitology. 2016;143: 741–748. doi: 10.1017/S0031182016000263 PubMed DOI

Hasegawa H. Spirurids. In: Modrý D, Pafčo B, Petrželková K, Hasegawa H, editors. Parasites of Apes: An Atlas of Coproscopic Diagnostics. Frankfurt: Chimaira; 2018. pp. 164–166.

Pomajbíková K, Oborník M, Horák A, Petrželková KJ, Grim JN, Levecke B, et al.. Novel Insights into the Genetic Diversity of Balantidium and Balantidium-like Cyst-forming Ciliates. PLoS Negl Trop Dis. 2013;7. doi: 10.1371/journal.pntd.0002140 PubMed DOI PMC

Martínez-Mota R, Pozo-Montuy G, Bonilla Sánchez YM, Gillespie TR. Effects of anthropogenic stress on the presence of parasites in a threatened population of black howler monkeys (Alouatta pigra). Therya. 2018;9: 161–170. doi: 10.12933/therya-18-572 DOI

Cabaret J, Gasnier N, Jacquiet P. Faecal egg counts are representative of digestive-tract strongyle worm burdens in sheep and goats. Parasite. 1998;5: 137–142. doi: 10.1051/parasite/1998052137 PubMed DOI

Anderson RM, Schad GA. Hookworm burdens and faecal egg counts: an analysis of the biological basis of variation. Trans R Soc Trop Med Hyg. 1985;79: 812–825. doi: 10.1016/0035-9203(85)90128-2 PubMed DOI

Warnick LD. Daily variability of equine fecal strongyle egg counts. Cornell Vet. 1992;82: 453–463. Available: https://europepmc.org/article/med/1424638 PubMed

East IJ, Bourne AS. A comparison of worm burden and faecal egg count for measuring the efficacy of vaccination against Oesophagostomum radiatum. Int J Parasitol. 1988;18: 863–864. doi: 10.1016/0020-7519(88)90130-0 PubMed DOI

Stear MJ, Bishop SC, Doligalska M, Duncan JL, Holmes PH, Irvine J, et al.. Regulation of egg production, worm burden, worm length and worm fecundity by host responses in sheep infected with Ostertagia circumcincta. Parasite Immunol. 1995;17: 643–652. doi: 10.1111/j.1365-3024.1995.tb01010.x PubMed DOI

Seivwright LJ, Redpath SM, Mougeot F, Watt L, Hudson PJ. Faecal egg counts provide a reliable measure of Trichostrongylus tenuis intensities in free-living red grouse Lagopus lagopus scoticus. J Helminthol. 2004;78: 69–76. doi: 10.1079/joh2003220 PubMed DOI

Shutt-Phillips K, Pafčo B, Heistermann M, Kasim A, Petrželková KJ, Profousová-Pšenková I, et al.. Fecal glucocorticoids and gastrointestinal parasite infections in wild western lowland gorillas (Gorilla gorilla gorilla) involved in ecotourism. Gen Comp Endocrinol. 2021;312: 113859. doi: 10.1016/j.ygcen.2021.113859 PubMed DOI

Chapman CA, Speirs ML, Gillespie TR, Holland T, Austad KM. Life on the edge: gastrointestinal parasites from the forest edge and interior primate groups. Am J Primatol. 2006;68: 397–409. doi: 10.1002/ajp.20233 PubMed DOI

Stoner KE. Prevalence and Intensity of Intestinal Parasites in Mantled Howling Monkeys (Alouatta palliata) in Northeastern Costa Rica: Implications for Conservation Biology. Conserv Biol. 1996;10: 539–546. doi: 10.1046/J.1523-1739.1996.10020539.X DOI

Petrželková KJ, Uwamahoro C, Pafčo B, Červená B, Samaš P, Mudakikwa A, et al.. Heterogeneity in patterns of helminth infections across populations of mountain gorillas (Gorilla beringei beringei). Sci Rep. 2021;11: 10869. doi: 10.1038/s41598-021-89283-4 PubMed DOI PMC

Ragazzo LJ, Zohdy S, Velonabison M, Herrera J, Wright PC, Gillespie TR. Entamoeba histolytica infection in wild lemurs associated with proximity to humans. Vet Parasitol. 2018;249: 98–101. doi: 10.1016/j.vetpar.2017.12.002 PubMed DOI

Tonukari NJ. Cassava and the future of starch. Electron J Biotechnol. 2004;7: 5–8.

Schovancová K, Pomajbíková K, Procházka P, Modrý D, Bolechová P, Petrželková KJ. Preliminary Insights into the Impact of Dietary Starch on the Ciliate, Neobalantidium coli, in Captive Chimpanzees. Speybroeck N, editor. PLoS One. 2013;8: e81374. doi: 10.1371/journal.pone.0081374 PubMed DOI PMC

Arroyo-Rodríguez V, Dias PAD. Effects of habitat fragmentation and disturbance on howler monkeys: A review. Am J Primatol. 2010;72: 1–16. doi: 10.1002/ajp.20753 PubMed DOI

Bentley-Condit VK. Food choices and habitat use by the Tana River yellow baboons (Papio cynocephalus): a preliminary report on five years of data. Am J Primatol. 2009;71: 432–436. doi: 10.1002/ajp.20670 PubMed DOI

Fehlmann G, O’Riain MJ, Kerr-Smith C, Hailes S, Luckman A, Shepard ELC, et al.. Extreme behavioural shifts by baboons exploiting risky, resource-rich, human-modified environments. Sci Reports 2017 71. 2017;7: 1–8. doi: 10.1038/s41598-017-14871-2 PubMed DOI PMC

Fürtbauer I, Christensen C, Bracken A, O’Riain MJ, Heistermann M, King AJ. Energetics at the urban edge: Environmental and individual predictors of urinary C-peptide levels in wild chacma baboons (Papio ursinus). Horm Behav. 2020;126: 104846. doi: 10.1016/j.yhbeh.2020.104846 PubMed DOI

Cote IM, Poulinb R. Parasitism and group size in social animals: a meta-analysis. Behav Ecol. 1995;6: 159–165. doi: 10.1093/beheco/6.2.159 DOI

Ellis S, Snyder-Mackler N, Ruiz-Lambides A, Platt ML, Brent LJN. Deconstructing sociality: the types of social connections that predict longevity in a group-living primate. Proc R Soc B. 2019;286. doi: 10.1098/RSPB.2019.1991 PubMed DOI PMC

Rimbach R, Bisanzio D, Galvis N, Link A, Di Fiore A, Gillespie TR. Brown spider monkeys (Ateles hybridus): a model for differentiating the role of social networks and physical contact on parasite transmission dynamics. Philos Trans R Soc B Biol Sci. 2015;370. doi: 10.1098/RSTB.2014.0110 PubMed DOI PMC

Deere JR, Schaber KL, Foerster S, Gilby IC, Feldblum JT, VanderWaal K, et al.. Gregariousness is associated with parasite species richness in a community of wild chimpanzees. Behav Ecol Sociobiol 2021 755. 2021;75: 1–11. doi: 10.1007/S00265-021-03030-3 PubMed DOI PMC

Müller-Klein N, Heistermann M, Strube C, Franz M, Schülke O, Ostner J. Exposure and susceptibility drive reinfection with gastrointestinal parasites in a social primate. Funct Ecol. 2019;33: 1088–1098. doi: 10.1111/1365-2435.13313 DOI

MacIntosh AJJ, Jacobs A, Garcia C, Shimizu K, Mouri K, Huffman MA, et al.. Monkeys in the Middle: Parasite Transmission through the Social Network of a Wild Primate. PLoS One. 2012;7: e51144. doi: 10.1371/journal.pone.0051144 PubMed DOI PMC

Chapman CA, Saj TL, Snaith T V. Temporal dynamics of nutrition, parasitism, and stress in colobus monkeys: Implications for population regulation and conservation. Am J Phys Anthropol. 2007;134: 240–250. doi: 10.1002/ajpa.20664 PubMed DOI

Holsapple MP, West LJ, Landreth KS. Species comparison of anatomical and functional immune system development. Birth Defects Res Part B Dev Reprod Toxicol. 2003;68: 321–334. doi: 10.1002/bdrb.10035 PubMed DOI

Kleinschmidt LM, Kinney ME, Hanley CS. Treatment of disseminated Strongyloides spp. infection in an infant Sumatran orangutan (Pongo abelii). J Med Primatol. 2018;47: 201–204. doi: 10.1111/jmp.12338 PubMed DOI PMC

Woolhouse MEJ. Patterns in parasite epidemiology: The peak shift. Parasitol Today. 1998;14: 428–434. doi: 10.1016/s0169-4758(98)01318-0 PubMed DOI

Schuster FL, Ramirez-Avila L. Current world status of Balantidium coli. Clin Microbiol Rev. 2008;21: 626–38. doi: 10.1128/CMR.00021-08 PubMed DOI PMC

Vadlamudi RS, Chi DS, Krishnaswamy G. Intestinal strongyloidiasis and hyperinfection syndrome. Clin Mol Allergy. 2006;4: 8. doi: 10.1186/1476-7961-4-8 PubMed DOI PMC

Hasegawa H, Sato H, Fujita S, Nguema PPM, Nobusue K, Miyagi K, et al.. Molecular identification of the causative agent of human strongyloidiasis acquired in Tanzania: Dispersal and diversity of Strongyloides spp. and their hosts. Parasitol Int. 2010;59: 407–413. doi: 10.1016/j.parint.2010.05.007 PubMed DOI

Doyle PW, Helgason MM, Mathias RG, Proctor EM, Delgado-Viscogliosi P, Ho L-C, et al.. Epidemiology and pathogenicity of Blastocystis hominis. J Clin Microbiol. 1990;28: 116–21. doi: 10.1128/jcm.28.1.116-121.1990 PubMed DOI PMC

Scanlan PD, Stensvold CR, Rajilić-Stojanović M, Heilig HGHJ, De Vos WM, O’Toole PW, et al.. The microbial eukaryote Blastocystis is a prevalent and diverse member of the healthy human gut microbiota. FEMS Microbiol Ecol. 2014;90: 326–330. doi: 10.1111/1574-6941.12396 PubMed DOI

Stensvold CR, Nielsen H V., Mølbak K, Smith H V. Pursuing the clinical significance of Blastocystis–diagnostic limitations. Trends Parasitol. 2009;25: 23–29. doi: 10.1016/j.pt.2008.09.010 PubMed DOI

Deere JR, Parsons MB, Lonsdorf E V., Lipende I, Kamenya S, Collins DA, et al.. Entamoeba histolytica infection in humans, chimpanzees and baboons in the Greater Gombe Ecosystem, Tanzania. Parasitology. 2018; 1–7. doi: 10.1017/S0031182018001397 PubMed DOI

Fotedar R, Stark D, Beebe N, Marriott D, Ellis J, Harkness J. Laboratory Diagnostic Techniques for Entamoeba Species. Clin Microbiol Rev. 2007;20: 511–532. doi: 10.1128/CMR.00004-07 PubMed DOI PMC

Pafčo B, Kreisinger J, Čížková D, Pšenková-Profousová I, Shutt-Phillips K, Todd A, et al.. Genetic diversity of primate strongylid nematodes: Do sympatric nonhuman primates and humans share their strongylid worms? Mol Ecol. 2019;28: 4786–4797. doi: 10.1111/mec.15257 PubMed DOI

Rothman JM, Chapman CA, van Soest PJ. Methods in Primate Nutritional Ecology: A User’s Guide. Int J Primatol. 2012;33: 542–566. doi: 10.1007/s10764-011-9568-x DOI

Heistermann M, Palme R, Ganswindt A. Comparison of different enzymeimmunoassays for assessment of adrenocortical activity in primates based on fecal analysis. Am J Primatol. 2006;68: 257–273. doi: 10.1002/ajp.20222 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace