Loss of protozoan and metazoan intestinal symbiont biodiversity in wild primates living in unprotected forests
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32616818
PubMed Central
PMC7331812
DOI
10.1038/s41598-020-67959-7
PII: 10.1038/s41598-020-67959-7
Knihovny.cz E-zdroje
- MeSH
- Amoebida * MeSH
- biodiverzita MeSH
- cizopasní červi * MeSH
- Colobus * MeSH
- dieta MeSH
- druhová specificita MeSH
- ekosystém MeSH
- feces MeSH
- lesy MeSH
- lidské činnosti MeSH
- Papio * MeSH
- střeva * MeSH
- symbióza * MeSH
- Trichostomatida * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Tanzanie MeSH
In light of the current biodiversity crisis, investigating the human impact on non-human primate gut biology is important to understanding the ecological significance of gut community dynamics across changing habitats and its role in conservation. Using traditional coproscopic parasitological techniques, we compared the gastrointestinal protozoan and metazoan symbiont richness of two primates: the Udzungwa red colobus (Procolobus gordonorum) and the yellow baboon (Papio cynocephalus). These species live sympatrically in both protected and unprotected forests within the Udzungwa Mountains of Tanzania with distinct ecological adaptations and diets. Our results showed that terrestrial and omnivorous yellow baboons had 2 (95% CI 1.47-2.73) and 3.78 (2.62-5.46) times higher gut symbiont richness (both including and excluding rare protozoans) compared to the arboreal and leaf-eating Udzungwa red colobus in unprotected and protected forest, respectively. We also found a consistent depletion of symbiont richness in red colobus living in the unprotected forest fragment compared to the continuous protected forests [the latter having 1.97 times (95% CI 1.33-2.92) higher richness], but not in yellow baboons. Richness reduction was particularly evident in the Udzungwa red colobus monkeys, confirming the pattern we reported previously for gut bacterial communities. This study demonstrates the impact of human activities even on the microbiodiversity of the intestinal tract of this species. Against the background of rapid global change and habitat degradation, and given the health benefits of intact gut communities, the decrease in natural gut symbionts reported here is worrying. Further study of these communities should form an essential part of the conservation framework.
Biology Centre Institute of Parasitology Czech Academy of Sciences České Budějovice Czech Republic
Department of Biology University of Florence Via Madonna del Piano 6 50019 Sesto Fiorentino Italy
Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
Epilab JRU FEM FBK Joint Research Unit Province of Trento Italy
Institute of Vertebrate Biology Czech Academy of Sciences Brno Czech Republic
Tropical Biodiversity MUSE Museo delle Scienze Corso del Lavoro e della Scienza 3 38123 Trento Italy
Zobrazit více v PubMed
Cardinale BJ, et al. Biodiversity loss and its impact on humanity. Nature. 2012;486:59–67. PubMed
Ripple WJ, et al. Saving the world’s terrestrial megafauna. Bioscience. 2016;66:807–812. PubMed PMC
Jamhuri J, et al. Selective logging causes the decline of large-sized mammals including those in unlogged patches surrounded by logged and agricultural areas. Biol. Conserv. 2018;227:40–47.
Barelli C, et al. Habitat fragmentation is associated to gut microbiota diversity of an endangered primate: Implications for conservation. Sci. Rep. 2015;5:14862. PubMed PMC
Amato KR, et al. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 2013;7:1344–1353. PubMed PMC
Borbón-García A, Reyes A, Vives-Flórez M, Caballero S. Captivity shapes the gut microbiota of Andean bears: Insights into health surveillance. Front. Microbiol. 2017;8:1316. PubMed PMC
Pascoe EL, Hauffe HC, Marchesi JR, Perkins SE. Network analysis of gut microbiota literature: An overview of the research landscape in non-human animal studies. ISME J. 2017;11:2644–2651. PubMed PMC
Hauffe HC, Barelli C. Conserve the germs: The gut microbiota and adaptive potential. Conserv. Genet. 2019;20:19–27.
Trevelline BK, Fontaine SS, Hartup BK, Kohl KD. Conservation biology needs a microbial renaissance: A call for the consideration of host-associated microbiota in wildlife management practices. Proc. R. Soc. B. 2019;286:20182448. PubMed PMC
Huffman MA, Chapman CA. Primate Parasite Ecology: The Dynamics and Study of Host-Parasite Relationships. Cambridge: Cambridge University Press; 2009.
Sá RM, et al. Gastrointestinal symbionts of chimpanzees in Cantanhez National Park, Guinea-Bissau with respect to habitat fragmentation. Am. J. Primatol. 2013;75:1032–1041. PubMed
Hotez PJ, et al. Helminth infections: The great neglected tropical diseases. J. Clin. Invest. 2008;118:1311–1321. PubMed PMC
Nunn CL, et al. Parasites and the evolutionary diversification of primate clades. Am. Nat. 2004;164:S90–S103. PubMed
Summers K, et al. Parasitic exploitation as an engine of diversity. Biol. Rev. 2003;78:639–675. PubMed
Barber I. The role of parasites in fish-bird interactions: A behavioural ecological perspective. In: Cowx IG, editor. Interactions Between Fish and Birds: Implications for Management. Oxford: Blackwell Science Ltd.; 2007. pp. 221–243.
Lefèvre T, et al. The ecological significance of manipulative parasites. Trends Ecol. Evol. 2009;24:41–48. PubMed
Broadhurst MJ, et al. Therapeutic helminth infection of macaques with idiopathic chronic diarrhea alters the inflammatory signature and mucosal microbiota of the colon. PLoS Pathog. 2012;8:e1003000. PubMed PMC
Fenton A, Brockhurst MA. The role of specialist parasites in structuring host communities. Ecol. Res. 2008;23:795–804.
Marcogliese DJ. Parasites: Small players with crucial roles in the ecological theater. EcoHealth. 2004;1:151–164.
Gómez A, Nichols E. Neglected wild life: Parasitic biodiversity as a conservation target. Int. J. Parasitol. Parasites Wildl. 2013;2:222–227. PubMed PMC
Mann AE, et al. Biodiversity of protists and nematodes in the wild nonhuman primate gut. ISME J. 2019;14:609–622. doi: 10.1038/s41396-019-0551-4. PubMed DOI PMC
Colwell RK, Dunn RR, Harris NC. Coextinction and persistence of dependent species in a changing world. Ann. Rev. Ecol. Evol. Syst. 2012;43:183–203.
Strona G. Past, present and future of host-parasite co-extinctions. Int. J. Parasitol. Parasites Wildl. 2015;4:431–441. PubMed PMC
Wood CL, et al. Human impacts decouple a fundamental ecological relationship—the positive association between host diversity and parasite diversity. Glob. Change Biol. 2018;24:3666–3679. PubMed
Bordes F, et al. Habitat fragmentation alters the properties of a host-parasite network: Rodents and their helminths in South-East Asia. J. Anim. Ecol. 2015;84:1253–1263. PubMed
Estrada A, et al. Impending extinction crisis of the world’s primates: Why primates matter. Sci. Adv. 2017;3:e1600946. PubMed PMC
Jones KE, et al. Global trends in emerging infectious diseases. Nature. 2008;451:990–993. PubMed PMC
Mittermeier RA, Turner WR, Larsen FW, Brooks TM, Gascon C. Global biodiversity conservation: The critical role of hotspots. Biodivers. Hotspots. 2011 doi: 10.1007/978-3-642-20992-5_1. DOI
Laurance WF, et al. Averting biodiversity collapse in tropical forest protected areas. Nature. 2012;489:290–294. PubMed
Rovero F, et al. Primates decline rapidly in unprotected forests: Evidence from a monitoring program with data constraints. PLoS One. 2015;10:e0118330. PubMed PMC
Rovero F, Mtui AS, Kitegile AS, Nielsen MR. Hunting or habitat degradation? Decline of primate populations in Udzungwa Mountains, Tanzania: An analysis of threats. Biol. Conserv. 2012;146:89–96.
Barelli C, et al. Altitude and human disturbance are associated with helminth diversity in an endangered primate, Procolobus gordonorum. PLoS One. 2019;14:e0225142. PubMed PMC
Steel, R. I. The effects of habitat parameters on the behavior, ecology, and conservation of the Udzungwa red colobus monkey (Procolobus gordonorum). Ph.D. Thesis, Duke University, USA (2012).
Warren Y, Higham JP, Maclarnon AM, Ross C. Crop-raiding and commensalism in olive baboons: The costs and benefits of living with humans. Primates of Gashaka. 2011 doi: 10.1007/978-1-4419-7403-7_8. DOI
Raharivololona BM, Ganzhorn JU. Seasonal variations in gastrointestinal parasites excreted by the gray mouse lemur Microcebus murinus in Madagascar. Endanger. Species Res. 2010;11:113–122.
Gillespie TR, Barelli C, Heistermann M. Effects of social status and stress on patterns of gastrointestinal parasitism in wild white-handed gibbons (Hylobates lar) Am. J. Phys. Anthropol. 2013;150:602–608. PubMed
Martínez-Mota R, Garber PA, Palme R, Gillespie TR. The relative effects of reproductive condition, stress, and seasonality on patterns of parasitism in wild female black howler monkeys (Alouatta pigra) Am. J. Primatol. 2017;79:e22669. PubMed
Barelli C, Albanese D, Stumpf RM, Asangba A, Donati C, Rovero F, Hauffe HC. mSystems. The gut microbiota of wild arboreal and ground-feeding tropical primates are affected differently by habitat disturbance. 2020;5(3):e00061–20. PubMed PMC
Lukeš J, Stensvold CR, Jirků-Pomajbíková K, Wegener Parfrey L. Are human intestinal eukaryotes beneficial or commensals? PLoS Pathog. 2015;11:e1005039. PubMed PMC
Sobotková K, et al. Helminth therapy—From the parasite perspective. Trends Parasitol. 2019;35:501–515. PubMed
Laforest-Lapointe I, Arrieta M-C. Microbial eukaryotes: A missing link in gut microbiome studies. mSystems. 2018;3:20. PubMed PMC
Kreisinger J, Bastien G, Hauffe HC, Marchesi J, Perkins SE. Interactions between multiple helminths and the gut microbiota in wild rodents. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015;370:20. PubMed PMC
Leung JM, Graham AL, Knowles SCL. Parasite-microbiota interactions with the vertebrate gut: Synthesis through an ecological lens. Front. Microbiol. 2018;9:843. PubMed PMC
Modrý D, Pafčo B, Petrželková KJ, Hasegawa H. Parasites of Apes: An Atlas of Coproscopic Diagnostics. Frankfurt am Main: Edition Chimaira; 2018.
Chapman CA, Saj TL, Snaith TV. Temporal dynamics of nutrition, parasitism, and stress in colobus monkeys: Implications for population regulation and conservation. Am. J. Phys. Anthropol. 2007;134:240–250. PubMed
Chapman CA, et al. Do food availability, parasitism, and stress have synergistic effects on red colobus populations living in forest fragments? Am. J. Phys. Anthropol. 2006;131:525–534. PubMed
Gillespie TR, Greiner EC, Chapman CA. Gastrointestinal parasites of the colobus monkeys of Uganda. J. Parasitol. 2005;91:569–573. PubMed
Weyher AH, Ross C, Semple S. Gastrointestinal parasites in crop raiding and wild foraging Papio anubis in Nigeria. Int. J. Primat. 2006;27:1519–1534.
Howells ME, Pruetz J, Gillespie TR. Patterns of gastro-intestinal parasites and commensals as an index of population and ecosystem health: The case of sympatric western chimpanzees (Pan troglodytes verus) and guinea baboons (Papio hamadryas papio) at Fongoli, Senegal. Am. J. Primatol. 2011;73:173–179. PubMed
Akinyi MY, et al. Costs and drivers of helminth parasite infection in wild female baboons. J. Anim. Ecol. 2019;88:1029–1043. PubMed PMC
Rovero F, Marshall AR, Jones T, Perkin A. The primates of the Udzungwa Mountains: Diversity, ecology and conservation. J. Anthropol. Sci. 2009;87:93–126. PubMed
Norton GW, Rhine RJ, Wynn GW, Wynn RD. Baboon diet: A five-year study of stability and variability in the plant feeding and habitat of the yellow baboons (Papio cynocephalus) of Mikumi National Park, Tanzania. Folia Primatol. 1987;48:78–120. PubMed
Arneberg P. Host population density and body mass as determinants of species richness in parasite communities: Comparative analyses of directly transmitted nematodes of mammals. Ecography. 2002;25:88–94.
Mbora DNM, McPeek MA. Host density and human activities mediate increased parasite prevalence and richness in primates threatened by habitat loss and fragmentation. J. Anim. Ecol. 2009;78:210–218. PubMed
Vitone ND, Altizer S, Nunn CL. Body size, diet and sociality influence the species richness of parasitic worms in anthropoid primates. Evol. Ecol. Res. 2004;6:183–199.
Nunn CL, Altizer S, Jones KE, Sechrest W. Comparative tests of parasite species richness in primates. Am. Nat. 2003;162:597–614. PubMed
Zommers Z, Macdonald DW, Johnson PJ, Gillespie TR. Impact of human activities on chimpanzee ground use and parasitism (Pan troglodytes) Conserv. Lett. 2013;6:264–273.
Ghai RR, Chapman CA, Omeja PA, Jonathan Davies T, Goldberg TL. Nodule worm infection in humans and wild primates in Uganda: Cryptic species in a newly identified region of human transmission. PLoS Neglect. Trop. D. 2014;8:e2641. PubMed PMC
Bogitsh BJ, Carter CE, Oeltmann TN. Intestinal nematodes. In: Bogitsh BJ, Carter CE, Oeltmann TN, editors. Human Parasitology. London: Academic Press; 2018. pp. 277–312.
Cable J, et al. Global change, parasite transmission and disease control: Lessons from ecology. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2017;372:20160088. PubMed PMC
Hussain S, Ram MS, Kumar A, Shivaji S, Umapathy G. Human presence increases parasitic load in endangered lion-tailed macaques (Macaca silenus) in its fragmented rainforest habitats in Southern India. PLoS One. 2013;8:e63685. PubMed PMC
Gillespie TR, Chapman CA, Greiner EC. Effects of logging on gastrointestinal parasite infections and infection risk in African primates. J. Appl. Ecol. 2005;42:699–707.
Martínez-Mota R, Pozo-Montuy G, Bonilla Sánchez YM, Gillespie TR. Effects of anthropogenic stress on the presence of parasites in a threatened population of black howler monkeys (Alouatta pigra) Therya. 2018;9:161–169.
Resasco J, et al. Experimental habitat fragmentation disrupts nematode infections in Australian skinks. Ecology. 2019;100:e02547. PubMed
Cardoso TS, Simões RO, Luque JLF, Maldonado A, Gentile R. The influence of habitat fragmentation on helminth communities in rodent populations from a Brazilian Mountain Atlantic Forest. J. Helminthol. 2016;90:460–468. PubMed
Marshall, A. R. Ecological Report on Magombera Forest. https://www.easternarc.or.tz/groups/webcontent/documents/pdf/MagomberaEcologicalReport2008.pdf (2008).
Cavada N, Tenan S, Barelli C, Rovero F. Effects of anthropogenic disturbance on primate density at the landscape scale. Conserv. Biol. 2019;33:873–882. PubMed
Bahrndorff S, Alemu T, Alemneh T, Lund Nielsen J. The microbiome of animals: Implications for conservation biology. Int. J. Genom. Proteom. 2016;5304028:20. PubMed PMC
Barelli C, et al. Modeling primate abundance in complex landscapes: A case study from the Udzungwa Mountains of Tanzania. Int. J. Primatol. 2015;36:209–226.
Ruiz-Lopez MJ, et al. A novel landscape genetic approach demonstrates the effects of human disturbance on the Udzungwa red colobus monkey (Procolobus gordonorum) Heredity. 2016;116:167–176. PubMed PMC
Barelli C, Rovero F, Hodges K, Araldi A, Heistermann M. Physiological stress levels in the endemic and endangered Udzungwa red colobus vary with elevation. Afr. Zool. 2015;50:23–30.
Gillespie TR. Noninvasive assessment of gastrointestinal parasite infections in free-ranging primates. Int. J. Primatol. 2006;27:1129–1143.
Hasegawa H. Methods of collection and identification of minute nematodes from the feces of primates, with special application to coevolutionary study of pinworms. In: Huffman MACC, editor. Primate Parasite Ecology: The Dynamics of Host-parasite Relationships. Cambridge: Cambridge University Press; 2009. pp. 29–46.
Jirků-Pomajbíková K, et al. Molecular identification of Entamoeba species in savanna woodland chimpanzees (Pan troglodytes schweinfurthii) Parasitology. 2016;143:741–748. PubMed
Stensvold CR, et al. Detecting Blastocystis using parasitologic and DNA-based methods: A comparative study. Diagn. Micr. Infect. Dis. 2007;59:303–307. PubMed
Poulin R. Quantifying parasite diversity. In: Morand S, Krasnov BR, Littlewood DT, editors. Parasite Diversity and Diversification: Evolutionary Ecology Meets Phylogenetics. Cambridge: Cambridge University Press; 2015. pp. 9–26.
Zuur AF, Ieno EN. A protocol for conducting and presenting results of regression-type analyses. Methods Ecol. Evol. 2016;7:636–645.