3D difference pair distribution functions
Dotaz
Zobrazit nápovědu
... the RF Pulse 44 -- 3.3.1 Flip-Angle Formula and Illustration 45 -- 3.3.2 RF Solutions 46 -- 3.3.3 Different ... ... Imaging and /c-Space 184 -- 10.3.1 Gradient Echo Example 184 -- 10.3.2 Spin Echo Example 193 -- 10.4 3D ... ... Volume Imaging 194 -- 10.4.1 Short-Tfi 3D Gradient Echo Imaging 194 -- 10.4.2 Multi-Slice 2D Imaging ... ... 220 -- 11.3.1 Heaviside Function 222 -- 11.3.2 Lorentzian Form 222 -- 11.3.3 The Sampling Function 223 ... ... SNR 333 -- 15.2 SNR Dependence on Imaging Parameters 334 -- 15.2.1 Generalized Dependence of SNR in 3D ...
Second edition xxxii, 944 stran : ilustrace ; 29 cm
- Konspekt
- Patologie. Klinická medicína
- NLK Obory
- radiologie, nukleární medicína a zobrazovací metody
- NLK Publikační typ
- kolektivní monografie
... Self-Energy and Pair Potential 25 -- 2.3. ... ... The Boltzmann Distribution and the Chemical Potential 26 -- 2.4. ... ... Classification of Forces and Pair Potentials 34 -- 2.8. ... ... Solubility of Ions in Different Solvents 62 -- 3.9. ... ... Different Direct Force-Measuring Techniques 227 -- 12.3. ...
Third edition xxx, 674 stran : 24 cm il. ;
- MeSH
- fyzikální chemie MeSH
- Publikační typ
- monografie MeSH
- Konspekt
- Fyzikální chemie
- NLK Obory
- chemie, klinická chemie
When biological specimens are cut into physical sections for three-dimensional (3D) imaging by confocal laser scanning microscopy, the slices may get distorted or ruptured. For subsequent 3D reconstruction, images from different physical sections need to be spatially aligned by optimization of a function composed of a data fidelity term evaluating similarity between the reference and target images, and a regularization term enforcing transformation smoothness. A regularization term evaluating the total variation (TV), which enables the registration algorithm to account for discontinuities in slice deformation (ruptures), while enforcing smoothness on continuously deformed regions, was proposed previously. The function with TV regularization was optimized using a graph-cut (GC) based iterative solution. However, GC may generate visible registration artifacts, which impair the 3D reconstruction. We present an alternative, multilabel TV optimization algorithm, which in the examined samples prevents the artifacts produced by GC. The algorithm is slower than GC but can be sped up several times when implemented in a multiprocessor computing environment. For image pairs with uneven brightness distribution, we introduce a reformulation of the TV-based registration, in which intensity-based data terms are replaced by comparison of salient features in the reference and target images quantified by local image entropies.
- MeSH
- algoritmy MeSH
- artefakty MeSH
- barvení a značení MeSH
- embryo nesavčí MeSH
- embryo savčí MeSH
- entropie MeSH
- konfokální mikroskopie metody MeSH
- krysa rodu rattus MeSH
- kur domácí MeSH
- mezonefros chemie ultrastruktura MeSH
- mikrotomie metody MeSH
- reprodukovatelnost výsledků MeSH
- senzitivita a specificita MeSH
- vylepšení obrazu přístrojové vybavení metody MeSH
- zalévání tkání do parafínu MeSH
- želvy MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
... Stroobant 281 -- Studies on the 3D structure, function and inhibition of HIV-1 reverse transcriptase, ... ... Meunier 332 -- Functional analysis of human paired box genes, D. ... ... Tzartos 506 -- Basic approaches to restore neuronal functions (BARNEF), P. ... ... Lehrach 641 -- Screening and distribution of YAC libraries, D. ... ... Viovy 673 -- Chromosomal distribution and biological function of human endogenous retroviral elements ...
Biomedical and health research, ISSN 0929-6743 vol. 9
xxxix, 744 s. ; 24 cm