Cryo-tomography and 3D Electron Diffraction Reveal the Polar Habit and Chiral Structure of the Malaria Pigment Crystal Hemozoin

. 2024 Aug 28 ; 10 (8) : 1504-1514. [epub] 20240704

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39220700

Detoxification of heme in Plasmodium depends on its crystallization into hemozoin. This pathway is a major target of antimalarial drugs. The crystalline structure of hemozoin was established by X-ray powder diffraction using a synthetic analog, β-hematin. Here, we apply emerging methods of in situ cryo-electron tomography and 3D electron diffraction to obtain a definitive structure of hemozoin directly from ruptured parasite cells. Biogenic hemozoin crystals take a striking polar morphology. Like β-hematin, the unit cell contains a heme dimer, which may form four distinct stereoisomers: two centrosymmetric and two chiral enantiomers. Diffraction analysis, supported by density functional theory analysis, reveals a selective mixture in the hemozoin lattice of one centrosymmetric and one chiral dimer. Absolute configuration has been determined by morphological analysis and confirmed by a novel method of exit-wave reconstruction from a focal series. Atomic disorder appears on specific facets asymmetrically, and the polar morphology can be understood in light of water binding. Structural modeling of the heme detoxification protein suggests a function as a chiral agent to bias the dimer formation in favor of rapid growth of a single crystalline phase. The refined structure of hemozoin should serve as a guide to new drug development.

Zobrazit více v PubMed

World Health Organization . World malaria report. https://www.who.int/publications-detail-redirect/9789240040496 (accessed 2022–05–19).

Olivier M.; Van Den Ham K.; Shio M.; Kassa F.; Fougeray S. Malarial Pigment Hemozoin and the Innate Inflammatory Response. Frontiers in Immunology 2014, 5, 25.10.3389/fimmu.2014.00025. PubMed DOI PMC

Kapishnikov S.; Staalsø T.; Yang Y.; Lee J.; Pérez-Berná A. J.; Pereiro E.; Yang Y.; Werner S.; Guttmann P.; Leiserowitz L.; Als-Nielsen J. Mode of Action of Quinoline Antimalarial Drugs in Red Blood Cells Infected by Plasmodium Falciparum Revealed in Vivo. Proc. Natl. Acad. Sci. U.S.A. 2019, 116 (46), 22946–22952. 10.1073/pnas.1910123116. PubMed DOI PMC

Meunier B.; Robert A. Heme as Trigger and Target for Trioxane-Containing Antimalarial Drugs. Acc. Chem. Res. 2010, 43 (11), 1444–1451. 10.1021/ar100070k. PubMed DOI

Weissbuch I.; Leiserowitz L. Interplay Between Malaria, Crystalline Hemozoin Formation, and Antimalarial Drug Action and Design. Chem. Rev. 2008, 108 (11), 4899–4914. 10.1021/cr078274t. PubMed DOI

Bray P. G.; Ward S. A.; O’Neill P. M.. Quinolines and Artemisinin: Chemistry, Biology and History. In Malaria: Drugs, Disease and Post-genomic Biology; Compans R. W., Cooper M. D., Honjo T., Koprowski H., Melchers F., Oldstone M. B. A., Olsnes S., Potter M., Vogt P. K., Wagner H., Sullivan D. J., Krishna S., Eds.; Current Topics in Microbiology and Immunology; Springer: Berlin, Heidelberg, 2005; pp 3–38.10.1007/3-540-29088-5_1. PubMed DOI

Knight C. A.; Cheng C. C.; DeVries A. L. Adsorption of Alpha-Helical Antifreeze Peptides on Specific Ice Crystal Surface Planes. Biophys. J. 1991, 59 (2), 409–418. 10.1016/S0006-3495(91)82234-2. PubMed DOI PMC

Bar Dolev M.; Braslavsky I.; Davies P. L. Ice-Binding Proteins and Their Function. Annu. Rev. Biochem. 2016, 85, 515–542. 10.1146/annurev-biochem-060815-014546. PubMed DOI

Olafson K. N.; Nguyen T. Q.; Rimer J. D.; Vekilov P. G. Antimalarials Inhibit Hematin Crystallization by Unique Drug–Surface Site Interactions. Proc. Natl. Acad. Sci. U. S. A. 2017, 114 (29), 7531–7536. 10.1073/pnas.1700125114. PubMed DOI PMC

Olafson K. N.; Ketchum M. A.; Rimer J. D.; Vekilov P. G. Mechanisms of Hematin Crystallization and Inhibition by the Antimalarial Drug Chloroquine. Proc. Natl. Acad. Sci. U. S. A. 2015, 112 (16), 4946–4951. 10.1073/pnas.1501023112. PubMed DOI PMC

Woodland J. G.; Hunter R.; Smith P. J.; Egan T. J. Chemical Proteomics and Super-Resolution Imaging Reveal That Chloroquine Interacts with Plasmodium falciparum Multidrug Resistance-Associated Protein and Lipids. ACS Chem. Biol. 2018, 13 (10), 2939–2948. 10.1021/acschembio.8b00583. PubMed DOI

Pagola S.; Stephens P. W.; Bohle D. S.; Kosar A. D.; Madsen S. K. The Structure of Malaria Pigment β-Haematin. Nature 2000, 404 (6775), 307–310. 10.1038/35005132. PubMed DOI

Solomonov I.; Osipova M.; Feldman Y.; Baehtz C.; Kjaer K.; Robinson I. K.; Webster G. T.; McNaughton D.; Wood B. R.; Weissbuch I.; Leiserowitz L. Crystal Nucleation, Growth, and Morphology of the Synthetic Malaria Pigment β-Hematin and the Effect Thereon by Quinoline Additives: The Malaria Pigment as a Target of Various Antimalarial Drugs. J. Am. Chem. Soc. 2007, 129 (9), 2615–2627. 10.1021/ja0674183. PubMed DOI

Buller R.; Peterson M. L.; Almarsson Ö.; Leiserowitz L. Quinoline Binding Site on Malaria Pigment Crystal: A Rational Pathway for Antimalaria Drug Design. Cryst. Growth Des. 2002, 2 (6), 553–562. 10.1021/cg025550i. DOI

Marom N.; Tkatchenko A.; Scheffler M.; Kronik L. Describing Both Dispersion Interactions and Electronic Structure Using Density Functional Theory: The Case of Metal-Phthalocyanine Dimers. J. Chem. Theory Comput 2010, 6 (1), 81–90. 10.1021/ct900410j. PubMed DOI

Straasø T.; Marom N.; Solomonov I.; Barfod L. K.; Burghammer M.; Feidenhans’l R.; Als-Nielsen J.; Leiserowitz L. The Malaria Pigment Hemozoin Comprises at Most Four Different Isomer Units in Two Crystalline Models: Chiral as Based on a Biochemical Hypothesis or Centrosymmetric Made of Enantiomorphous Sectors. Cryst. Growth Des. 2014, 14 (4), 1543–1554. 10.1021/cg401151f. DOI

Straasø T.; Kapishnikov S.; Kato K.; Takata M.; Als-Nielsen J.; Leiserowitz L. The Role of the Four Stereoisomers of the Heme Fe–O Cyclic Dimer in the Crystalline Phase Behavior of Synthetic Hemozoin: Relevance to Native Hemozoin Crystallization. Cryst. Growth Des. 2011, 11 (8), 3342–3350. 10.1021/cg200410b. DOI

Schneider S.; Marles-Wright J.; Sharp K. H.; Paoli M. Diversity and Conservation of Interactions for Binding Heme in B-Type Heme Proteins. Nat. Prod. Rep. 2007, 24 (3), 621–630. 10.1039/b604186h. PubMed DOI

Bohle D. S.; Dodd E. L.; Stephens P. W. Structure of Malaria Pigment and Related Propanoate-Linked Metalloporphyrin Dimers. Chemistry & Biodiversity 2012, 9 (9), 1891–1902. 10.1002/cbdv.201200033. PubMed DOI

Gildenhuys J.; Roex T. le; Egan T. J.; de Villiers K. A. The Single Crystal X-Ray Structure of β-Hematin DMSO Solvate Grown in the Presence of Chloroquine, a β-Hematin Growth-Rate Inhibitor. J. Am. Chem. Soc. 2013, 135 (3), 1037–1047. 10.1021/ja308741e. PubMed DOI PMC

Dilanian R. A.; Streltsov V.; Coughlan H. D.; Quiney H. M.; Martin A. V.; Klonis N.; Dogovski C.; Boutet S.; Messerschmidt M.; Williams G. J.; Williams S.; Phillips N. W.; Nugent K. A.; Tilley L.; Abbey B. Nanocrystallography Measurements of Early Stage Synthetic Malaria Pigment. J. Appl. Crystallogr. 2017, 50 (5), 1533–1540. 10.1107/S1600576717012663. PubMed DOI PMC

Kapishnikov S.; Hempelmann E.; Elbaum M.; Als-Nielsen J.; Leiserowitz L. Malaria Pigment Crystals: The Achilles′ Heel of the Malaria Parasite. ChemMedChem. 2021, 16 (10), 1515–1532. 10.1002/cmdc.202000895. PubMed DOI PMC

Pisciotta J. M.; Coppens I.; Tripathi A. K.; Scholl P. F.; Shuman J.; Bajad S.; Shulaev V.; Sullivan D. J. The Role of Neutral Lipid Nanospheres in Plasmodium falciparum Haem Crystallization. Biochem. J. 2007, 402 (1), 197–204. 10.1042/BJ20060986. PubMed DOI PMC

Vekilov P. G.; Rimer J. D.; Olafson K. N.; Ketchum M. A. Lipid or Aqueous Medium for Hematin Crystallization?. CrystEngComm 2015, 17 (41), 7790–7800. 10.1039/C5CE01178G. DOI

Mohunlal R. A.Metallomic, Proteomic and Lipidomic Investigation of the Malaria Parasite’s Digestive Vacuole and Insights into the Mediators of Haemozoin Formation. PhD Thesis, University of Capetown, 2019.

Pisciotta J. M.; Sullivan D. Hemozoin: Oil versus Water. Parasitol. Int. 2008, 57 (2), 89–96. 10.1016/j.parint.2007.09.009. PubMed DOI PMC

Kapishnikov S.; Weiner A.; Shimoni E.; Guttmann P.; Schneider G.; Dahan-Pasternak N.; Dzikowski R.; Leiserowitz L.; Elbaum M. Oriented Nucleation of Hemozoin at the Digestive Vacuole Membrane in Plasmodium falciparum. Proc. Natl. Acad. Sci. U.S.A. 2012, 109 (28), 11188–11193. 10.1073/pnas.1118120109. PubMed DOI PMC

Kapishnikov S.; Grolimund D.; Schneider G.; Pereiro E.; McNally J. G.; Als-Nielsen J.; Leiserowitz L. Unraveling Heme Detoxification in the Malaria Parasite by in Situ Correlative X-Ray Fluorescence Microscopy and Soft X-Ray Tomography. Sci. Rep 2017, 7 (1), 7610.10.1038/s41598-017-06650-w. PubMed DOI PMC

Kapishnikov S.; Leiserowitz L.; Yang Y.; Cloetens P.; Pereiro E.; Awamu Ndonglack F.; Matuschewski K.; Als-Nielsen J. Biochemistry of Malaria Parasite Infected Red Blood Cells by X-Ray Microscopy. Sci. Rep. 2017, 7 (1), 802.10.1038/s41598-017-00921-2. PubMed DOI PMC

Elbaum M.; Seifer S.; Houben L.; Wolf S. G.; Rez P. Toward Compositional Contrast by Cryo-STEM. Acc. Chem. Res. 2021, 54 (19), 3621–3631. 10.1021/acs.accounts.1c00279. PubMed DOI

Mullick D.; Rechav K.; Leiserowitz L.; Regev-Rudzki N.; Dzikowski R.; Elbaum M.. Diffraction Contrast in Cryo-Scanning Transmission Electron Tomography Reveals the Boundary of Hemozoin Crystals in Situ. bioRxiv May 15, 2022; p 2022.05.13.491750.10.1101/2022.05.13.491750. PubMed DOI

Wolf S. G.; Houben L.; Elbaum M. Cryo-Scanning Transmission Electron Tomography of Vitrified Cells. Nat. Meth 2014, 11 (4), 423–428. 10.1038/nmeth.2842. PubMed DOI

Beale E. V.; Waterman D. G.; Hecksel C.; van Rooyen J.; Gilchrist J. B.; Parkhurst J. M.; de Haas F.; Buijsse B.; Evans G.; Zhang P. A Workflow for Protein Structure Determination From Thin Crystal Lamella by Micro-Electron Diffraction. Frontiers in Molecular Biosciences 2020, 7, 179.10.3389/fmolb.2020.00179. PubMed DOI PMC

Gemmi M.; Lanza A. E. 3D Electron Diffraction Techniques. Acta Cryst. B 2019, 75 (4), 495–504. 10.1107/S2052520619007510. PubMed DOI

Gemmi M.; Mugnaioli E.; Gorelik T. E.; Kolb U.; Palatinus L.; Boullay P.; Hovmöller S.; Abrahams J. P. 3D Electron Diffraction: The Nanocrystallography Revolution. ACS Cent. Sci. 2019, 5 (8), 1315–1329. 10.1021/acscentsci.9b00394. PubMed DOI PMC

Jones C. G.; Martynowycz M. W.; Hattne J.; Fulton T. J.; Stoltz B. M.; Rodriguez J. A.; Nelson H. M.; Gonen T. The CryoEM Method MicroED as a Powerful Tool for Small Molecule Structure Determination. ACS Cent. Sci. 2018, 4 (11), 1587–1592. 10.1021/acscentsci.8b00760. PubMed DOI PMC

Kapishnikov S.; Berthing T.; Hviid L.; Dierolf M.; Menzel A.; Pfeiffer F.; Als-Nielsen J.; Leiserowitz L. Aligned Hemozoin Crystals in Curved Clusters in Malarial Red Blood Cells Revealed by Nanoprobe X-Ray Fe Fluorescence and Diffraction. Proc. Natl. Acad. Sci. U.S.A. 2012, 109 (28), 11184–11187. 10.1073/pnas.1118134109. PubMed DOI PMC

Ambele M. A.; Sewell B. T.; Cummings F. R.; Smith P. J.; Egan T. J. Synthetic Hemozoin (β-Hematin) Crystals Nucleate at the Surface of Neutral Lipid Droplets That Control Their Sizes. Cryst. Growth Des. 2013, 13 (10), 4442–4452. 10.1021/cg4009416. PubMed DOI PMC

Noland G. S.; Briones N.; Sullivan D. J. The Shape and Size of Hemozoin Crystals Distinguishes Diverse Plasmodium Species. Mol. Biochem. Parasitol. 2003, 130 (2), 91–99. 10.1016/S0166-6851(03)00163-4. PubMed DOI

Wendt C.; de Souza W.; Pinheiro A.; Silva L.; de Sá Pinheiro A. A.; Gauvin R.; Miranda K. High-Resolution Electron Microscopy Analysis of Malaria Hemozoin Crystals Reveals New Aspects of Crystal Growth and Elemental Composition. Cryst. Growth Des. 2021, 21 (10), 5521–5533. 10.1021/acs.cgd.1c00087. DOI

Clabbers M. T. B.; Gruene T.; Parkhurst J. M.; Abrahams J. P.; Waterman D. G. Electron Diffraction Data Processing with DIALS. Acta Cryst. D 2018, 74 (6), 506–518. 10.1107/S2059798318007726. PubMed DOI PMC

Winter G.; Waterman D. G.; Parkhurst J. M.; Brewster A. S.; Gildea R. J.; Gerstel M.; Fuentes-Montero L.; Vollmar M.; Michels-Clark T.; Young I. D.; Sauter N. K.; Evans G. DIALS: Implementation and Evaluation of a New Integration Package. Acta Cryst. D 2018, 74 (2), 85–97. 10.1107/S2059798317017235. PubMed DOI PMC

Sheldrick G. M. Crystal Structure Refinement with SHELXL. Acta Cryst. C 2015, 71 (1), 3–8. 10.1107/S2053229614024218. PubMed DOI PMC

Tkatchenko A.; DiStasio R. A.; Car R.; Scheffler M. Accurate and Efficient Method for Many-Body van Der Waals Interactions. Phys. Rev. Lett. 2012, 108 (23), 23640210.1103/PhysRevLett.108.236402. PubMed DOI

Weissbuch I.; Addadi L.; Berkovitch-Yellin Z.; Gati E.; Weinstein S.; Lahav M.; Leiserowitz L. Centrosymmetric Crystals for the Direct Assignment of the Absolute Configuration of Chiral Molecules. Application to the Alpha-Amino Acids by Their Effect on Glycine Crystals. J. Am. Chem. Soc. 1983, 105 (22), 6615–6621. 10.1021/ja00360a012. DOI

Lahav M.; Leiserowitz L. A Stereochemical Approach That Demonstrates the Effect of Solvent on the Growth of Polar Crystals: A Perspective. Cryst. Growth Des. 2006, 6 (3), 619–624. 10.1021/cg0504253. DOI

Klar P. B.; Krysiak Y.; Xu H.; Steciuk G.; Cho J.; Zou X.; Palatinus L. Accurate Structure Models and Absolute Configuration Determination Using Dynamical Effects in Continuous-Rotation 3D Electron Diffraction Data. Nat. Chem. 2023, 15 (6), 848–855. 10.1038/s41557-023-01186-1. PubMed DOI PMC

Biran I.; Houben L.; Weissman H.; Hildebrand M.; Kronik L.; Rybtchinski B. Real-Space Crystal Structure Analysis by Low-Dose Focal-Series TEM Imaging of Organic Materials with Near-Atomic Resolution. Adv. Mater. 2022, 34 (26), 220208810.1002/adma.202202088. PubMed DOI

Varadi M.; Anyango S.; Deshpande M.; Nair S.; Natassia C.; Yordanova G.; Yuan D.; Stroe O.; Wood G.; Laydon A.; Žídek A.; Green T.; Tunyasuvunakool K.; Petersen S.; Jumper J.; Clancy E.; Green R.; Vora A.; Lutfi M.; Figurnov M.; Cowie A.; Hobbs N.; Kohli P.; Kleywegt G.; Birney E.; Hassabis D.; Velankar S. AlphaFold Protein Structure Database: Massively Expanding the Structural Coverage of Protein-Sequence Space with High-Accuracy Models. Nucleic Acids Res. 2022, 50 (D1), D439–D444. 10.1093/nar/gkab1061. PubMed DOI PMC

Nakatani K.; Ishikawa H.; Aono S.; Mizutani Y. Identification of Essential Histidine Residues Involved in Heme Binding and Hemozoin Formation in Heme Detoxification Protein from Plasmodium Falciparum. Sci. Rep 2014, 4 (1), 6137.10.1038/srep06137. PubMed DOI PMC

Marom N.; Tkatchenko A.; Kapishnikov S.; Kronik L.; Leiserowitz L. Structure and Formation of Synthetic Hemozoin: Insights From First-Principles Calculations. Cryst. Growth Des. 2011, 11 (8), 3332–3341. 10.1021/cg200409d. DOI

Chugh M.; Sundararaman V.; Kumar S.; Reddy V. S.; Siddiqui W. A.; Stuart K. D.; Malhotra P. Protein Complex Directs Hemoglobin-to-Hemozoin Formation in Plasmodium falciparum. Proc. Natl. Acad. Sci. U. S. A. 2013, 110 (14), 5392–5397. 10.1073/pnas.1218412110. PubMed DOI PMC

Jani D.; Nagarkatti R.; Beatty W.; Angel R.; Slebodnick C.; Andersen J.; Kumar S.; Rathore D. HDP-a Novel Heme Detoxification Protein from the Malaria Parasite. PLoS Pathog. 2008, 4 (4), e100005310.1371/journal.ppat.1000053. PubMed DOI PMC

Singh R.; Makde R. D. An Assay Procedure to Investigate the Transformation of Toxic Heme into Inert Hemozoin via Plasmodial Heme Detoxification Protein. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2022, 1870 (9), 14083210.1016/j.bbapap.2022.140832. PubMed DOI

Nakatani K.; Ishikawa H.; Aono S.; Mizutani Y. Heme-Binding Properties of Heme Detoxification Protein from Plasmodium falciparum. Biochem. Biophys. Res. Commun. 2013, 439 (4), 477–480. 10.1016/j.bbrc.2013.08.100. PubMed DOI

Gupta P.; Mehrotra S.; Sharma A.; Chugh M.; Pandey R.; Kaushik A.; Khurana S.; Srivastava N.; Srivastava T.; Deshmukh A.; Panda A.; Aggarwal P.; Bhavesh N. S.; Bhatnagar R. K.; Mohmmed A.; Gupta D.; Malhotra P. Exploring Heme and Hemoglobin Binding Regions of Plasmodium Heme Detoxification Protein for New Antimalarial Discovery. J. Med. Chem. 2017, 60 (20), 8298–8308. 10.1021/acs.jmedchem.7b00089. PubMed DOI

Guerra E. D.; Baakdah F.; Georges E.; Bohle D. S.; Cerruti M. What Is Pure Hemozoin? A Close Look at the Surface of the Malaria Pigment. Journal of Inorganic Biochemistry 2019, 194, 214–222. 10.1016/j.jinorgbio.2019.01.021. PubMed DOI

Berman A.; Addadi L.; Kvick Å.; Leiserowitz L.; Nelson M.; Weiner S. Intercalation of Sea Urchin Proteins in Calcite: Study of a Crystalline Composite Material. Science 1990, 250 (4981), 664–667. 10.1126/science.250.4981.664. PubMed DOI

Bohle D. S.; Dinnebier R. E.; Madsen S. K.; Stephens P. W. Characterization of the Products of the Heme Detoxification Pathway in Malarial Late Trophozoites by X-Ray Diffraction. J. Biol. Chem. 1997, 272 (2), 713–716. 10.1074/jbc.272.2.713. PubMed DOI

Matz J. M.; Drepper B.; Blum T. B.; Genderen E. van; Burrell A.; Martin P.; Stach T.; Collinson L. M.; Abrahams J. P.; Matuschewski K.; Blackman M. J. A Lipocalin Mediates Unidirectional Heme Biomineralization in Malaria Parasites. Proc. Natl. Acad. Sci. U.S.A. 2020, 117 (28), 16546–16556. 10.1073/pnas.2001153117. PubMed DOI PMC

Oliveira M. F.; Kycia S. W.; Gomez A.; Kosar A. J.; Bohle D. S.; Hempelmann E.; Menezes D.; Vannier-Santos M. A.; Oliveira P. L.; Ferreira S. T. Structural and Morphological Characterization of Hemozoin Produced by Schistosoma Mansoni and Rhodnius Prolixus. FEBS Lett. 2005, 579 (27), 6010–6016. 10.1016/j.febslet.2005.09.035. PubMed DOI

Pek R. H.; Yuan X.; Rietzschel N.; Zhang J.; Jackson L.; Nishibori E.; Ribeiro A.; Simmons W.; Jagadeesh J.; Sugimoto H.; Alam M. Z.; Garrett L.; Haldar M.; Ralle M.; Phillips J. D.; Bodine D. M.; Hamza I. Hemozoin Produced by Mammals Confers Heme Tolerance. eLife 2019, 8, e4950310.7554/eLife.49503. PubMed DOI PMC

de Villiers K. A.; Egan T. J. Heme Detoxification in the Malaria Parasite: A Target for Antimalarial Drug Development. Acc. Chem. Res. 2021, 54 (11), 2649–2659. 10.1021/acs.accounts.1c00154. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...