Ionisation of atoms determined by kappa refinement against 3D electron diffraction data

. 2024 Oct 21 ; 15 (1) : 9066. [epub] 20241021

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39433795
Odkazy

PubMed 39433795
PubMed Central PMC11494101
DOI 10.1038/s41467-024-53448-2
PII: 10.1038/s41467-024-53448-2
Knihovny.cz E-zdroje

Conventional refinement strategies used for three-dimensional electron diffraction (3D ED) data disregard the bonding effects between the atoms in a molecule by assuming a pure spherical model called the Independent Atom model (IAM) and may lead to an inaccurate or biased structure. Here we show that it is possible to perform a refinement going beyond the IAM with electron diffraction data. We perform kappa refinement which models charge transfers between atoms while assuming a spherical model. We demonstrate the procedure by analysing five inorganic samples; quartz, natrolite, borane, lutecium aluminium garnet, and caesium lead bromide. Implementation of kappa refinement improved the structure model obtained over conventional IAM refinements and provided information on the ionisation of atoms. The results were validated against periodic DFT calculations. The work presents an extension of the conventional refinement of 3D ED data for a more accurate structure model which enables charge density information to be extracted.

Zobrazit více v PubMed

Gemmi, M. et al. 3D Electron diffraction: The nanocrystallography revolution. ACS Cent. Sci.5, 1315–1329 (2019). PubMed PMC

Kolb, U., Gorelik, T. & Otten, M. T. Towards automated diffraction tomography. Part II—Cell parameter determination. Ultramicroscopy108, 763–772 (2008). PubMed

Gemmi, M. & Oleynikov, P. Scanning reciprocal space for solving unknown structures: energy filtered diffraction tomography and rotation diffraction tomography methods. Z. Kristallogr. Cryst.Mater.228, 51–58 (2013).

Boullay, P., Palatinus, L. & Barrier, N. Precession electron diffraction tomography for solving complex modulated structures: the case of Bi5Nb3O15. Inorg. Chem.52, 6127–6135 (2013). PubMed

Jones, C. G. et al. The cryoEM method microED as a powerful tool for small molecule structure determination. ACS Cent. Sci.4, 1587–1592 (2018). PubMed PMC

Zhang, D., Oleynikov, P., Hovmöller, S. & Zou, X. Collecting 3D electron diffraction data by the rotation method. Z. F.ür. Krist.225, 94–102 (2010).

Yuan, S. et al. Ti8Zr2O12(COO)16] Cluster: An ideal inorganic building unit for photoactive metal-organic frameworks. ACS Cent. Sci.4, 105–111 (2018). PubMed PMC

Cichocka, M. O., Ångström, J., Wang, B., Zou, X. & Smeets, S. High-throughput continuous rotation electron diffraction data acquisition via software automation. J. Appl. Crystallogr.51, 1652–1661 (2018). PubMed PMC

Ge, M., Zou, X. & Huang, Z. Three-dimensional electron diffraction for structural analysis of beam-sensitive metal-organic frameworks. Crystals11, 263 (2021). PubMed

Yörük, E., Klein, H. & Kodjikian, S. Dose symmetric electron diffraction tomography (DS-EDT): Implementation of a dose-symmetric tomography scheme in 3D electron diffraction. Ultramicroscopy255, 113857 (2024). PubMed

Plana-Ruiz, S. et al. Fast-ADT: A fast and automated electron diffraction tomography setup for structure determination and refinement. Ultramicroscopy211, 112951 (2020). PubMed

Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem.71, 3–8 (2015). PubMed PMC

Wan, W., Sun, J., Su, J., Hovmöller, S. & Zou, X. Three-dimensional rotation electron diffraction: software RED for automated data collection and data processing. J. Appl. Crystallogr.46, 1863–1873 (2013). PubMed PMC

Clabbers, M. T. B., Gruene, T., Parkhurst, J. M., Abrahams, J. P. & Waterman, D. G. Electron diffraction data processing with DIALS. Acta Crystallogr. Sect. Struct. Biol.74, 506–518 (2018). PubMed PMC

Burla, M. C. et al. Crystal structure determination and refinement via SIR2014. J. Appl. Crystallogr.48, 306–309 (2015).

Palatinus, L. et al. Specifics of the data processing of precession electron diffraction tomography data and their implementation in the program PETS2.0. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater.75, 512–522 (2019). PubMed

Palatinus, L. & Chapuis, G. SUPERFLIP – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr.40, 786–790 (2007).

Petříček, V., Palatinus, L., Plášil, J. & Dušek, M. Jana2020 – a new version of the crystallographic computing system Jana. Z. F.ür. Krist. Cryst. Mater.238, 271–282 (2023).

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, Ja. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr.42, 339–341 (2009).

Guillot, B., Viry, L., Guillot, R., Lecomte, C. & Jelsch, C. Refinement of proteins at subatomic resolution with MOPRO. J. Appl. Crystallogr.34, 214–223 (2001).

Zou, X. et al. Electron Crystallography: Electron Microscopy and Electron Diffraction. (Oxford University Press, Oxford, New York, 2011).

Transmission Electron Microscopy: Diffraction, Imaging, and Spectrometry. (Springer, Cham, Switzerland, 2016).

Hammond, C. The Basics of Crystallography and Diffraction. (Oxford University Press: Oxford; New York, 2001.

Palatinus, L., Petříček, V. & Corrêa, C. A. Structure refinement using precession electron diffraction tomography and dynamical diffraction: theory and implementation. Acta Crystallogr. Sect. Found. Adv.71, 235–244 (2015). PubMed

Palatinus, L. et al. Structure refinement using precession electron diffraction tomography and dynamical diffraction: tests on experimental data. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater.71, 740–751 (2015). PubMed

Klar, P. B. et al. Accurate structure models and absolute configuration determination using dynamical effects in continuous-rotation 3D electron diffraction data. Nat. Chem.15, 848–855 (2023). PubMed PMC

Genoni, A. et al. Quantum crystallography: Current developments and future perspectives. Chem. Eur. J.24, 10881–10905 (2018). PubMed

Guillot, B., Jelsch, C. & Macchi, P. in 10 Multipole Modeling with MoPro and XD 235–268 (De Gruyter, 2021).

Gruza, B., Chodkiewicz, M. L., Krzeszczakowska, J. & Dominiak, P. M. Refinement of organic crystal structures with multipolar electron scattering factors. Acta Crystallogr. Sect. Found. Adv.76, 92–109 (2020). PubMed PMC

Hansen, N. K. & Coppens, P. Testing aspherical atom refinements on small-molecule data sets. Acta Crystallogr. A34, 909–921 (1978).

Stewart, R. F. Electron population analysis with rigid pseudoatoms. Acta Crystallogr. A32, 565–574 (1976).

Kulik, M. & Dominiak, P. M. Electron density is not spherical: the many applications of the transferable aspherical atom model. Comput. Struct. Biotechnol. J.20, 6237–6243 (2022). PubMed PMC

Jha, K. K. et al. Multipolar atom types from theory and statistical clustering (MATTS) data bank: restructurization and extension of UBDB. J. Chem. Inf. Model.62, 3752–3765 (2022). PubMed PMC

Pichon-Pesme, V., Lecomte, C. & Lachekar, H. On building a data bank of transferable experimental electron density parameters applicable to polypeptides. J. Phys. Chem.99, 6242–6250 (1995).

Brock, C. P., Dunitz, J. D. & Hirshfeld, F. L. Transferability of deformation densities among related molecules: atomic multipole parameters from perylene for improved estimation of molecular vibrations in naphthalene and anthracene. Acta Crystallogr. B47, 789–797 (1991).

Nelyubina, Y. V., Korlyukov, A. A., Lyssenko, K. A. & Fedyanin, I. V. Transferable aspherical atom modeling of electron density in highly symmetric crystals: A case study of alkali-metal nitrates. Inorg. Chem.56, 4688–4696 (2017). PubMed

Malinska, M. & Dauter, Z. Transferable aspherical atom model refinement of protein and DNA structures against ultrahigh-resolution X-ray data. Acta Crystallogr. Sect. Struct. Biol.72, 770–779 (2016). PubMed PMC

Jelsch, C., Pichon-Pesme, V., Lecomte, C. & Aubry, A. Transferability of multipole charge-density parameters: Application to very high resolution oligopeptide and protein structures. Acta Crystallogr. D. Biol. Crystallogr.54, 1306–1318 (1998). PubMed

Jelsch, C. et al. Accurate protein crystallography at ultra-high resolution: Valence electron distribution in crambin. Proc. Natl. Acad. Sci. USA97, 3171–3176 (2000). PubMed PMC

Olech, B., Brázda, P., Palatinus, L. & Dominiak, P. M. Dynamical refinement with multipolar electron scattering factors. IUCrJ11, 309–324 (2024). PubMed PMC

Lippmann, T. et al. Charge-density analysis of YBa2Cu3O6.98. Comparison of theoretical and experimental results. Acta Crystallogr. A59, 437–451 (2003). PubMed

Koritsánszky, T. et al. Accurate experimental electronic properties of DL-proline monohydrate obtained within 1 Day. Science279, 356–358 (1998). PubMed

Schmøkel, M. S. et al. Atomic properties and chemical bonding in the pyrite and marcasite polymorphs of FeS2: a combined experimental and theoretical electron density study. Chem. Sci.5, 1408–1421 (2014).

Avilov, A., Lepeshov, G., Pietsch, U. & Tsirelson, V. Multipole analysis of the electron density and electrostatic potential in germanium by high-resolution electron diffraction. J. Phys. Chem. Solids62, 2135–2142 (2001).

Wu, J. S. & Spence, J. C. H. Structure and bonding in alpha-copper phthalocyanine by electron diffraction. Acta Crystallogr. A59, 495–505 (2003). PubMed

Friis, J., Jiang, B., Spence, J., Marthinsen, K. & Holmestad, R. Extinction-free electron diffraction refinement of bonding in SrTiO3. Acta Crystallogr. A60, 402–408 (2004). PubMed

Wu, L., Meng, Q. & Zhu, Y. Mapping valence electron distributions with multipole density formalism using 4D-STEM. Ultramicroscopy219, 113095 (2020). PubMed

Coppens, P. et al. Net atomic charges and molecular dipole moments from spherical-atom X-ray refinements, and the relation between atomic charge and shape. Acta Crystallogr. A35, 63–72 (1979).

Brázda, P., Klementová, M., Krysiak, Y. & Palatinus, L. Accurate lattice parameters from 3D electron diffraction data. I. Optical distortions. IUCrJ9, 735–755 (2022). PubMed PMC

Pastero, L., Turci, F., Leinardi, R., Pavan, C. & Monopoli, M. Synthesis of α-Quartz with controlled properties for the investigation of the molecular determinants in silica toxicology. Cryst. Growth Des.16, 2394–2403 (2016).

Simpson, P. G. & Lipscomb, W. N. MOLECULAR STRUCTURE OF B18H22. Proc. Natl. Acad. Sci. USA48, 1490–1491 (1962). PubMed PMC

Londesborough, M. G. S. et al. Distinct photophysics of the isomers of B18H22 explained. Inorg. Chem.51, 1471–1479 (2012). PubMed

King, R. B. Three-dimensional aromaticity in polyhedral boranes and related molecules. Chem. Rev.101, 1119–1152 (2001). PubMed

Cerdán, L., Braborec, J., Garcia-Moreno, I., Costela, A. & Londesborough, M. G. S. A borane laser. Nat. Commun.6, 5958 (2015). PubMed

Guter, G. A. & Schaeffer, G. W. THE STRONG ACID BEHAVIOR OF DECABORANE. J. Am. Chem. Soc.78, 3546–3546 (1956).

Heřmánek, S. & Plotová, H. Chemistry of boranes. XXII. The acidity of boranes. Collect. Czechoslov. Chem. Commun.36, 1639–1643 (1971).

Hamilton, E. J. M. et al. A stacking interaction between a bridging hydrogen atom and aromatic π density in the n-B18H22–benzene system. Chem. Eur. J.12, 2571–2578 (2006). PubMed

Olsen, F. P., Vasavada, R. C. & Hawthorne, M. F. The chemistry of n-B18H22 and i-B18H22. J. Am. Chem. Soc.90, 3946–3951 (1968).

Londesborough, M. G. S. et al. Effect of iodination on the photophysics of the laser borane anti-B18H22: generation of efficient photosensitizers of oxygen. Inorg. Chem.58, 10248–10259 (2019). PubMed

Møller, C. K. Crystal structure and photoconductivity of Cæsium plumbohalides. Nature182, 1436–1436 (1958).

Euler, F. & Bruce, J. A. Oxygen coordinates of compounds with garnet structure. Acta Crystallogr.19, 971–978 (1965).

Kulik, M., Chodkiewicz, M. L. & Dominiak, P. M. Theoretical 3D electron diffraction electrostatic potential maps of proteins modeled with a multipolar pseudoatom data bank. Acta Crystallogr. Sect. Struct. Biol.78, 1010–1020 (2022). PubMed PMC

Mott., S. N. F. & Massey, S. H. S. W. The Theory of Atomic Collisions. (Clarendon Press, 1965).

Stevens, E. D., DeLucia, M. L. & Coppens, P. Experimental observation of the effect of crystal field splitting on the electron density distribution of iron pyrite. Inorg. Chem.19, 813–820 (1980).

Coppens, P. X-Ray diffraction and the charge distribution in transition metal complexes. Coord. Chem. Rev.65, 285–307 (1985).

Farrugia, L. J. & Evans, C. Experimental X-ray charge density studies on the binary carbonyls Cr(CO)6, Fe(CO)5, and Ni(CO)4. J. Phys. Chem. A109, 8834–8848 (2005). PubMed

Farrugia, L. J., Evans, C., Lentz, D. & Roemer, M. The QTAIM approach to chemical bonding between transition metals and carbocyclic rings: A combined experimental and theoretical study of (η5-C5H5)Mn(CO)3, (η6-C6H6)Cr(CO)3, and (E)-{(η5-C5H4)CF═CF(η5-C5H4)}(η5-C5H5)2Fe2. J. Am. Chem. Soc.131, 1251–1268 (2009). PubMed

Stokkebro Schmøkel, M., Overgaard, J. & Brummerstedt Iversen, B. Experimental electron density studies of inorganic materials. Z. F.ür. Anorg. Allg. Chem.639, 1922–1932 (2013).

Zhurov, V. V., Zhurova, E. A. & Pinkerton, A. A. Chemical bonding in cesium uranyl chloride based on the experimental electron density distribution. Inorg. Chem.50, 6330–6333 (2011). PubMed

Pant, A. K. & Stevens, E. D. Experimental electron-density-distribution study of potassium iron disulfide, a low-dimensional material. Phys. Rev. B37, 1109–1120 (1988). PubMed

Bats, J. W. & Fuess, H. Deformation density in complex anions. III. Potassium perchlorate. Acta Crystallogr. B38, 2116–2120 (1982).

Yeh, S. K., Wu, S. Y., Lee, C. S. & Wang, Y. Electron-density distribution in a crystal of dipotassium tetrafluoronickelate, K2NiF4.

Děcká, K. et al. Scintillation response enhancement in nanocrystalline lead halide perovskite thin films on scintillating wafers. Nanomaterials12, 14 (2022). PubMed PMC

Jan Pejchal et al. Luminescence and scintillation properties of Mg-codoped LuAG:Pr single crystals annealed in air. J. Lumin.181, 277–285 (2017).

Brázda, P., Palatinus, L. & Babor, M. Electron diffraction determines molecular absolute configuration in a pharmaceutical nanocrystal. Science364, 667–669 (2019). PubMed

Erba, A. et al. CRYSTAL23: A Program for computational solid state physics and chemistry. J. Chem. Theory Comput.19, 6891–6932 (2023). PubMed PMC

Lee, C., Yang, W. & Parr, R. G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B37, 785–789 (1988). PubMed

Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys.98, 5648–5652 (1993).

Vilela Oliveira, D., Laun, J., Peintinger, M. F. & Bredow, T. BSSE-correction scheme for consistent gaussian basis sets of double- and triple-zeta valence with polarization quality for solid-state calculations. J. Comput. Chem.40, 2364–2376 (2019). PubMed

Blaha, P. et al. WIEN2k: An APW+lo program for calculating the properties of solids. J. Chem. Phys.152, 074101 (2020). PubMed

Mott, N. F. & Bragg, W. L. The scattering of electrons by atoms. Proc. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character127, 658–665 (1997).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...