Ionisation of atoms determined by kappa refinement against 3D electron diffraction data
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
39433795
PubMed Central
PMC11494101
DOI
10.1038/s41467-024-53448-2
PII: 10.1038/s41467-024-53448-2
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Conventional refinement strategies used for three-dimensional electron diffraction (3D ED) data disregard the bonding effects between the atoms in a molecule by assuming a pure spherical model called the Independent Atom model (IAM) and may lead to an inaccurate or biased structure. Here we show that it is possible to perform a refinement going beyond the IAM with electron diffraction data. We perform kappa refinement which models charge transfers between atoms while assuming a spherical model. We demonstrate the procedure by analysing five inorganic samples; quartz, natrolite, borane, lutecium aluminium garnet, and caesium lead bromide. Implementation of kappa refinement improved the structure model obtained over conventional IAM refinements and provided information on the ionisation of atoms. The results were validated against periodic DFT calculations. The work presents an extension of the conventional refinement of 3D ED data for a more accurate structure model which enables charge density information to be extracted.
1 Institute for Theoretical Physics Universität Hamburg Hamburg Germany
Biological and Chemical Research Centre University of Warsaw Warsaw Poland
Faculty of Mathematics and Physics Charles University Prague Czech Republic
Institute of Physics of the Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Gemmi, M. et al. 3D Electron diffraction: The nanocrystallography revolution. ACS Cent. Sci.5, 1315–1329 (2019). PubMed PMC
Kolb, U., Gorelik, T. & Otten, M. T. Towards automated diffraction tomography. Part II—Cell parameter determination. Ultramicroscopy108, 763–772 (2008). PubMed
Gemmi, M. & Oleynikov, P. Scanning reciprocal space for solving unknown structures: energy filtered diffraction tomography and rotation diffraction tomography methods. Z. Kristallogr. Cryst.Mater.228, 51–58 (2013).
Boullay, P., Palatinus, L. & Barrier, N. Precession electron diffraction tomography for solving complex modulated structures: the case of Bi5Nb3O15. Inorg. Chem.52, 6127–6135 (2013). PubMed
Jones, C. G. et al. The cryoEM method microED as a powerful tool for small molecule structure determination. ACS Cent. Sci.4, 1587–1592 (2018). PubMed PMC
Zhang, D., Oleynikov, P., Hovmöller, S. & Zou, X. Collecting 3D electron diffraction data by the rotation method. Z. F.ür. Krist.225, 94–102 (2010).
Yuan, S. et al. Ti8Zr2O12(COO)16] Cluster: An ideal inorganic building unit for photoactive metal-organic frameworks. ACS Cent. Sci.4, 105–111 (2018). PubMed PMC
Cichocka, M. O., Ångström, J., Wang, B., Zou, X. & Smeets, S. High-throughput continuous rotation electron diffraction data acquisition via software automation. J. Appl. Crystallogr.51, 1652–1661 (2018). PubMed PMC
Ge, M., Zou, X. & Huang, Z. Three-dimensional electron diffraction for structural analysis of beam-sensitive metal-organic frameworks. Crystals11, 263 (2021). PubMed
Yörük, E., Klein, H. & Kodjikian, S. Dose symmetric electron diffraction tomography (DS-EDT): Implementation of a dose-symmetric tomography scheme in 3D electron diffraction. Ultramicroscopy255, 113857 (2024). PubMed
Plana-Ruiz, S. et al. Fast-ADT: A fast and automated electron diffraction tomography setup for structure determination and refinement. Ultramicroscopy211, 112951 (2020). PubMed
Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem.71, 3–8 (2015). PubMed PMC
Wan, W., Sun, J., Su, J., Hovmöller, S. & Zou, X. Three-dimensional rotation electron diffraction: software RED for automated data collection and data processing. J. Appl. Crystallogr.46, 1863–1873 (2013). PubMed PMC
Clabbers, M. T. B., Gruene, T., Parkhurst, J. M., Abrahams, J. P. & Waterman, D. G. Electron diffraction data processing with DIALS. Acta Crystallogr. Sect. Struct. Biol.74, 506–518 (2018). PubMed PMC
Burla, M. C. et al. Crystal structure determination and refinement via SIR2014. J. Appl. Crystallogr.48, 306–309 (2015).
Palatinus, L. et al. Specifics of the data processing of precession electron diffraction tomography data and their implementation in the program PETS2.0. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater.75, 512–522 (2019). PubMed
Palatinus, L. & Chapuis, G. SUPERFLIP – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr.40, 786–790 (2007).
Petříček, V., Palatinus, L., Plášil, J. & Dušek, M. Jana2020 – a new version of the crystallographic computing system Jana. Z. F.ür. Krist. Cryst. Mater.238, 271–282 (2023).
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, Ja. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr.42, 339–341 (2009).
Guillot, B., Viry, L., Guillot, R., Lecomte, C. & Jelsch, C. Refinement of proteins at subatomic resolution with MOPRO. J. Appl. Crystallogr.34, 214–223 (2001).
Zou, X. et al. Electron Crystallography: Electron Microscopy and Electron Diffraction. (Oxford University Press, Oxford, New York, 2011).
Transmission Electron Microscopy: Diffraction, Imaging, and Spectrometry. (Springer, Cham, Switzerland, 2016).
Hammond, C. The Basics of Crystallography and Diffraction. (Oxford University Press: Oxford; New York, 2001.
Palatinus, L., Petříček, V. & Corrêa, C. A. Structure refinement using precession electron diffraction tomography and dynamical diffraction: theory and implementation. Acta Crystallogr. Sect. Found. Adv.71, 235–244 (2015). PubMed
Palatinus, L. et al. Structure refinement using precession electron diffraction tomography and dynamical diffraction: tests on experimental data. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater.71, 740–751 (2015). PubMed
Klar, P. B. et al. Accurate structure models and absolute configuration determination using dynamical effects in continuous-rotation 3D electron diffraction data. Nat. Chem.15, 848–855 (2023). PubMed PMC
Genoni, A. et al. Quantum crystallography: Current developments and future perspectives. Chem. Eur. J.24, 10881–10905 (2018). PubMed
Guillot, B., Jelsch, C. & Macchi, P. in 10 Multipole Modeling with MoPro and XD 235–268 (De Gruyter, 2021).
Gruza, B., Chodkiewicz, M. L., Krzeszczakowska, J. & Dominiak, P. M. Refinement of organic crystal structures with multipolar electron scattering factors. Acta Crystallogr. Sect. Found. Adv.76, 92–109 (2020). PubMed PMC
Hansen, N. K. & Coppens, P. Testing aspherical atom refinements on small-molecule data sets. Acta Crystallogr. A34, 909–921 (1978).
Stewart, R. F. Electron population analysis with rigid pseudoatoms. Acta Crystallogr. A32, 565–574 (1976).
Kulik, M. & Dominiak, P. M. Electron density is not spherical: the many applications of the transferable aspherical atom model. Comput. Struct. Biotechnol. J.20, 6237–6243 (2022). PubMed PMC
Jha, K. K. et al. Multipolar atom types from theory and statistical clustering (MATTS) data bank: restructurization and extension of UBDB. J. Chem. Inf. Model.62, 3752–3765 (2022). PubMed PMC
Pichon-Pesme, V., Lecomte, C. & Lachekar, H. On building a data bank of transferable experimental electron density parameters applicable to polypeptides. J. Phys. Chem.99, 6242–6250 (1995).
Brock, C. P., Dunitz, J. D. & Hirshfeld, F. L. Transferability of deformation densities among related molecules: atomic multipole parameters from perylene for improved estimation of molecular vibrations in naphthalene and anthracene. Acta Crystallogr. B47, 789–797 (1991).
Nelyubina, Y. V., Korlyukov, A. A., Lyssenko, K. A. & Fedyanin, I. V. Transferable aspherical atom modeling of electron density in highly symmetric crystals: A case study of alkali-metal nitrates. Inorg. Chem.56, 4688–4696 (2017). PubMed
Malinska, M. & Dauter, Z. Transferable aspherical atom model refinement of protein and DNA structures against ultrahigh-resolution X-ray data. Acta Crystallogr. Sect. Struct. Biol.72, 770–779 (2016). PubMed PMC
Jelsch, C., Pichon-Pesme, V., Lecomte, C. & Aubry, A. Transferability of multipole charge-density parameters: Application to very high resolution oligopeptide and protein structures. Acta Crystallogr. D. Biol. Crystallogr.54, 1306–1318 (1998). PubMed
Jelsch, C. et al. Accurate protein crystallography at ultra-high resolution: Valence electron distribution in crambin. Proc. Natl. Acad. Sci. USA97, 3171–3176 (2000). PubMed PMC
Olech, B., Brázda, P., Palatinus, L. & Dominiak, P. M. Dynamical refinement with multipolar electron scattering factors. IUCrJ11, 309–324 (2024). PubMed PMC
Lippmann, T. et al. Charge-density analysis of YBa2Cu3O6.98. Comparison of theoretical and experimental results. Acta Crystallogr. A59, 437–451 (2003). PubMed
Koritsánszky, T. et al. Accurate experimental electronic properties of DL-proline monohydrate obtained within 1 Day. Science279, 356–358 (1998). PubMed
Schmøkel, M. S. et al. Atomic properties and chemical bonding in the pyrite and marcasite polymorphs of FeS2: a combined experimental and theoretical electron density study. Chem. Sci.5, 1408–1421 (2014).
Avilov, A., Lepeshov, G., Pietsch, U. & Tsirelson, V. Multipole analysis of the electron density and electrostatic potential in germanium by high-resolution electron diffraction. J. Phys. Chem. Solids62, 2135–2142 (2001).
Wu, J. S. & Spence, J. C. H. Structure and bonding in alpha-copper phthalocyanine by electron diffraction. Acta Crystallogr. A59, 495–505 (2003). PubMed
Friis, J., Jiang, B., Spence, J., Marthinsen, K. & Holmestad, R. Extinction-free electron diffraction refinement of bonding in SrTiO3. Acta Crystallogr. A60, 402–408 (2004). PubMed
Wu, L., Meng, Q. & Zhu, Y. Mapping valence electron distributions with multipole density formalism using 4D-STEM. Ultramicroscopy219, 113095 (2020). PubMed
Coppens, P. et al. Net atomic charges and molecular dipole moments from spherical-atom X-ray refinements, and the relation between atomic charge and shape. Acta Crystallogr. A35, 63–72 (1979).
Brázda, P., Klementová, M., Krysiak, Y. & Palatinus, L. Accurate lattice parameters from 3D electron diffraction data. I. Optical distortions. IUCrJ9, 735–755 (2022). PubMed PMC
Pastero, L., Turci, F., Leinardi, R., Pavan, C. & Monopoli, M. Synthesis of α-Quartz with controlled properties for the investigation of the molecular determinants in silica toxicology. Cryst. Growth Des.16, 2394–2403 (2016).
Simpson, P. G. & Lipscomb, W. N. MOLECULAR STRUCTURE OF B18H22. Proc. Natl. Acad. Sci. USA48, 1490–1491 (1962). PubMed PMC
Londesborough, M. G. S. et al. Distinct photophysics of the isomers of B18H22 explained. Inorg. Chem.51, 1471–1479 (2012). PubMed
King, R. B. Three-dimensional aromaticity in polyhedral boranes and related molecules. Chem. Rev.101, 1119–1152 (2001). PubMed
Cerdán, L., Braborec, J., Garcia-Moreno, I., Costela, A. & Londesborough, M. G. S. A borane laser. Nat. Commun.6, 5958 (2015). PubMed
Guter, G. A. & Schaeffer, G. W. THE STRONG ACID BEHAVIOR OF DECABORANE. J. Am. Chem. Soc.78, 3546–3546 (1956).
Heřmánek, S. & Plotová, H. Chemistry of boranes. XXII. The acidity of boranes. Collect. Czechoslov. Chem. Commun.36, 1639–1643 (1971).
Hamilton, E. J. M. et al. A stacking interaction between a bridging hydrogen atom and aromatic π density in the n-B18H22–benzene system. Chem. Eur. J.12, 2571–2578 (2006). PubMed
Olsen, F. P., Vasavada, R. C. & Hawthorne, M. F. The chemistry of n-B18H22 and i-B18H22. J. Am. Chem. Soc.90, 3946–3951 (1968).
Londesborough, M. G. S. et al. Effect of iodination on the photophysics of the laser borane anti-B18H22: generation of efficient photosensitizers of oxygen. Inorg. Chem.58, 10248–10259 (2019). PubMed
Møller, C. K. Crystal structure and photoconductivity of Cæsium plumbohalides. Nature182, 1436–1436 (1958).
Euler, F. & Bruce, J. A. Oxygen coordinates of compounds with garnet structure. Acta Crystallogr.19, 971–978 (1965).
Kulik, M., Chodkiewicz, M. L. & Dominiak, P. M. Theoretical 3D electron diffraction electrostatic potential maps of proteins modeled with a multipolar pseudoatom data bank. Acta Crystallogr. Sect. Struct. Biol.78, 1010–1020 (2022). PubMed PMC
Mott., S. N. F. & Massey, S. H. S. W. The Theory of Atomic Collisions. (Clarendon Press, 1965).
Stevens, E. D., DeLucia, M. L. & Coppens, P. Experimental observation of the effect of crystal field splitting on the electron density distribution of iron pyrite. Inorg. Chem.19, 813–820 (1980).
Coppens, P. X-Ray diffraction and the charge distribution in transition metal complexes. Coord. Chem. Rev.65, 285–307 (1985).
Farrugia, L. J. & Evans, C. Experimental X-ray charge density studies on the binary carbonyls Cr(CO)6, Fe(CO)5, and Ni(CO)4. J. Phys. Chem. A109, 8834–8848 (2005). PubMed
Farrugia, L. J., Evans, C., Lentz, D. & Roemer, M. The QTAIM approach to chemical bonding between transition metals and carbocyclic rings: A combined experimental and theoretical study of (η5-C5H5)Mn(CO)3, (η6-C6H6)Cr(CO)3, and (E)-{(η5-C5H4)CF═CF(η5-C5H4)}(η5-C5H5)2Fe2. J. Am. Chem. Soc.131, 1251–1268 (2009). PubMed
Stokkebro Schmøkel, M., Overgaard, J. & Brummerstedt Iversen, B. Experimental electron density studies of inorganic materials. Z. F.ür. Anorg. Allg. Chem.639, 1922–1932 (2013).
Zhurov, V. V., Zhurova, E. A. & Pinkerton, A. A. Chemical bonding in cesium uranyl chloride based on the experimental electron density distribution. Inorg. Chem.50, 6330–6333 (2011). PubMed
Pant, A. K. & Stevens, E. D. Experimental electron-density-distribution study of potassium iron disulfide, a low-dimensional material. Phys. Rev. B37, 1109–1120 (1988). PubMed
Bats, J. W. & Fuess, H. Deformation density in complex anions. III. Potassium perchlorate. Acta Crystallogr. B38, 2116–2120 (1982).
Yeh, S. K., Wu, S. Y., Lee, C. S. & Wang, Y. Electron-density distribution in a crystal of dipotassium tetrafluoronickelate, K2NiF4.
Děcká, K. et al. Scintillation response enhancement in nanocrystalline lead halide perovskite thin films on scintillating wafers. Nanomaterials12, 14 (2022). PubMed PMC
Jan Pejchal et al. Luminescence and scintillation properties of Mg-codoped LuAG:Pr single crystals annealed in air. J. Lumin.181, 277–285 (2017).
Brázda, P., Palatinus, L. & Babor, M. Electron diffraction determines molecular absolute configuration in a pharmaceutical nanocrystal. Science364, 667–669 (2019). PubMed
Erba, A. et al. CRYSTAL23: A Program for computational solid state physics and chemistry. J. Chem. Theory Comput.19, 6891–6932 (2023). PubMed PMC
Lee, C., Yang, W. & Parr, R. G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B37, 785–789 (1988). PubMed
Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys.98, 5648–5652 (1993).
Vilela Oliveira, D., Laun, J., Peintinger, M. F. & Bredow, T. BSSE-correction scheme for consistent gaussian basis sets of double- and triple-zeta valence with polarization quality for solid-state calculations. J. Comput. Chem.40, 2364–2376 (2019). PubMed
Blaha, P. et al. WIEN2k: An APW+lo program for calculating the properties of solids. J. Chem. Phys.152, 074101 (2020). PubMed
Mott, N. F. & Bragg, W. L. The scattering of electrons by atoms. Proc. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character127, 658–665 (1997).