Dynamical refinement with multipolar electron scattering factors

. 2024 May 01 ; 11 (Pt 3) : 309-324. [epub] 20240501

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38512772

Grantová podpora
2020/39/I/ST4/02904 Narodowe Centrum Nauki
21-44862L Grantová Agentura České Republiky
PLG/2021/014598 the Polish high-performance computing infrastructure PLGrid

Dynamical refinement is a well established method for refining crystal structures against 3D electron diffraction (ED) data and its benefits have been discussed in the literature [Palatinus, Petříček & Corrêa, (2015). Acta Cryst. A71, 235-244; Palatinus, Corrêa et al. (2015). Acta Cryst. B71, 740-751]. However, until now, dynamical refinements have only been conducted using the independent atom model (IAM). Recent research has shown that a more accurate description can be achieved by applying the transferable aspherical atom model (TAAM), but this has been limited only to kinematical refinements [Gruza et al. (2020). Acta Cryst. A76, 92-109; Jha et al. (2021). J. Appl. Cryst. 54, 1234-1243]. In this study, we combine dynamical refinement with TAAM for the crystal structure of 1-methyluracil, using data from precession ED. Our results show that this approach improves the residual Fourier electrostatic potential and refinement figures of merit. Furthermore, it leads to systematic changes in the atomic displacement parameters of all atoms and the positions of hydrogen atoms. We found that the refinement results are sensitive to the parameters used in the TAAM modelling process. Though our results show that TAAM offers superior performance compared with IAM in all cases, they also show that TAAM parameters obtained by periodic DFT calculations on the refined structure are superior to the TAAM parameters from the UBDB/MATTS database. It appears that multipolar parameters transferred from the database may not be sufficiently accurate to provide a satisfactory description of all details of the electrostatic potential probed by the 3D ED experiment.

Zobrazit více v PubMed

Allen, F. H. & Bruno, I. J. (2010). Acta Cryst. B66, 380–386. PubMed

Avilov, A. S. (2003). Z. Kristallogr. Cryst. Mater. 218, 247–258.

Bojarowski, S. A., Kumar, P. & Dominiak, P. M. (2017). Acta Cryst. B73, 598–609. PubMed

Brázda, P., Klementová, M., Krysiak, Y. & Palatinus, L. (2022). IUCrJ, 9, 735–755. PubMed PMC

Brázda, P., Palatinus, L. & Babor, M. (2019). Science, 364, 667–669. PubMed

Chodkiewicz, M. L., Woińska, M. & Woźniak, K. (2020). IUCrJ, 7, 1199–1215. PubMed PMC

Choudhury, R. R., Chitra, R., Capet, F. & Roussel, P. (2011). J. Mol. Struct. 994, 44–54.

Civalleri, B., Zicovich-Wilson, C. M., Valenzano, L. & Ugliengo, P. (2008). CrystEngComm, 10, 405–410.

Cowley, J. M., Peng, L. M., Ren, G., Dudarev, S. L. & Whelan, M. J. (2006). International Tables for Crystallography, Vol. C, 1st online ed., edited by E. Prince. Chester: International Union of Crystallography.

Dittrich, B., Koritsánszky, T. & Luger, P. (2004). Angew. Chem. Int. Ed. 43, 2718–2721. PubMed

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Domagała, S. & Jelsch, C. (2008). J. Appl. Cryst. 41, 1140–1149.

Dominiak, P. M., Volkov, A., Li, X., Messerschmidt, M. & Coppens, P. (2007). J. Chem. Theory Comput. 3, 232–247. PubMed

Dovesi, R., Saunders, V. R., Roetti, C., Orlando, R., Zicovich-Wilson, C. M., Pascale, F., Civalleri, B., Doll, K., Harrison, N. M., Bush, I. J., D’Arco, P., Llunell, M., Causà, M., Noël, Y., Maschio, L., Erba, A., Rerat, M. & Casassa, S. (2017). CRYSTAL17 User’s Manual. University of Torino, Italy.

Erba, A., Ferrabone, M., Orlando, R. & Dovesi, R. (2013). J. Comput. Chem. 34, 3456–354. PubMed

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). GAUSSIAN16. Gaussian Inc., Wallingford, CT, USA. https://gaussian.com/gaussian16/.

Gemmi, M., Mugnaioli, E., Gorelik, T. E., Kolb, U., Palatinus, L., Boullay, P., Hovmöller, S. & Abrahams, J. P. (2019). ACS Cent. Sci. 5, 1315–1329. PubMed PMC

Grabowsky, S., Luger, P., Buschmann, J., Schneider, T., Schirmeister, T., Sobolev, A. N. & Jayatilaka, D. (2012). Angew. Chem. Int. Ed. 51, 6776–6779. PubMed

Grimme, S. (2006). J. Comput. Chem. 27, 1787–1799. PubMed

Gruza, B., Chodkiewicz, M. L., Krzeszczakowska, J. & Dominiak, P. M. (2020). Acta Cryst. A76, 92–109. PubMed PMC

Hansen, N. K. & Coppens, P. (1978). Acta Cryst. A34, 909–921.

Jarzembska, K. N. & Dominiak, P. M. (2012). Acta Cryst. A68, 139–147. PubMed

Jayatilaka, D. (1998). Phys. Rev. Lett. 80, 798–801.

Jayatilaka, D. & Dittrich, B. (2008). Acta Cryst. A64, 383–393. PubMed

Jayatilaka, D. & Grimwood, D. J. (2001). Acta Cryst. A57, 76–86. PubMed

Jha, K. K., Gruza, B., Chodkiewicz, M. L., Jelsch, C. & Dominiak, P. M. (2021). J. Appl. Cryst. 54, 1234–1243.

Jha, K. K., Gruza, B., Kumar, P., Chodkiewicz, M. L. & Dominiak, P. M. (2020). Acta Cryst. B76, 296–306. PubMed

Jha, K. K., Gruza, B., Sypko, A., Kumar, P., Chodkiewicz, M. L. & Dominiak, P. M. (2022). J. Chem. Inf. Model. 62, 3752–3765. PubMed PMC

Jha, K. K., Kleemiss, F., Chodkiewicz, M. L. & Dominiak, P. M. (2023). J. Appl. Cryst. 56, 116–127. PubMed PMC

Kleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, L., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675–1692. PubMed PMC

Kumar, P., Gruza, B., Bojarowski, S. A. & Dominiak, P. M. (2019). Acta Cryst. A75, 398–408. PubMed

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.

McMullan, R. K. & Craven, B. M. (1989). Acta Cryst. B45, 270–276. PubMed

Meindl, K. & Henn, J. (2008). Acta Cryst. A64, 404–418. PubMed

Nakashima, P. N. H. (2017). Struct. Chem. 28, 1319–1332.

Nakashima, P. N. H., Smith, A. E., Etheridge, J. & Muddle, B. C. (2011). Science, 331, 1583–1586. PubMed

Nishibori, E., Sunaoshi, E., Yoshida, A., Aoyagi, S., Kato, K., Takata, M. & Sakata, M. (2007). Acta Cryst. A63, 43–52. PubMed

Novikova, V. V., Kulygin, A. K., Lepeshov, G. G. & Avilov, A. S. (2018). Crystallogr. Rep. 63, 883–890.

Palatinus, L., Brázda, P., Boullay, P., Perez, O., Klementová, M., Petit, S., Eigner, V., Zaarour, M. & Mintova, S. (2017). Science, 355, 166–169. PubMed

Palatinus, L., Brázda, P., Jelínek, M., Hrdá, J., Steciuk, G. & Klementová, M. (2019). Acta Cryst. B75, 512–522. PubMed

Palatinus, L., Corrêa, C. A., Steciuk, G., Jacob, D., Roussel, P., Boullay, P., Klementová, M., Gemmi, M., Kopeček, J., Domeneghetti, M. C., Cámara, F. & Petříček, V. (2015). Acta Cryst. B71, 740–751. PubMed

Palatinus, L., Petříček, V. & Corrêa, C. A. (2015). Acta Cryst. A71, 235–244. PubMed

Petříček, V., Palatinus, L., Plášil, J. & Dušek, M. (2023). Z. Krist. Cryst. Mater. 238, 271–282.

Ruth, P. N., Herbst-Irmer, R. & Stalke, D. (2022). IUCrJ, 9, 286–297. PubMed PMC

Sakata, M. & Sato, M. (1990). Acta Cryst. A46, 263–270.

Sakata, M., Uno, T., Takata, M. & Howard, C. J. (1993). J. Appl. Cryst. 26, 159–165.

Tolborg, K. & Iversen, B. B. (2019). Chem. A Eur. J. 25, 15010–15029. PubMed

Tsirelson, V. G., Avilov, A. S., Lepeshov, G. G., Kulygin, A. K., Stahn, J., Pietsch, U. & Spence, J. C. H. (2001). J. Phys. Chem. B, 105, 5068–5074.

Volkov, A., Li, X., Koritsanszky, T. & Coppens, P. (2004). J. Phys. Chem. A, 108, 4283–4300.

Volkov, A., Macchi, P., Farrugia, L. J. & Gatti, C. (2006). XD2006. http://xd.chem.buffalo.edu.

Wall, M. E. (2016). IUCrJ, 3, 237–246. PubMed PMC

Woińska, M., Grabowsky, S., Dominiak, P. M., Woźniak, K. & Jayatilaka, D. (2016). Sci. Adv. 2, e1600192. PubMed PMC

Wu, J. S. & Spence, J. C. H. (2003). Acta Cryst. A59, 495–505. PubMed

Zuo, J. M., Kim, M., O’Keeffe, M. & Spence, J. C. H. (1999). Nature, 401, 49–52.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Ionisation of atoms determined by kappa refinement against 3D electron diffraction data

. 2024 Oct 21 ; 15 (1) : 9066. [epub] 20241021

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace