dynamical refinement
Dotaz
Zobrazit nápovědu
Although current AMBER force fields are relatively accurate for canonical B-DNA, many noncanonical structures are still described incorrectly. As noncanonical motifs are attracting increasing attention due to the role they play in living organisms, further improvement is desirable. Here, we have chosen the Z-DNA molecule, which can be considered a touchstone of the universality of empirical force fields, since the noncanonical α and γ backbone conformations native to Z-DNA are also found in protein-DNA complexes, i-motif DNA, and other noncanonical DNAs. We show that spurious α/γ conformations occurring in simulations with current AMBER force fields, OL15 and bsc1, are largely due to inaccurate α/γ parametrization. Moreover, stabilization of native Z-DNA substates involving γ = trans conformations appears to be in conflict with the correct description of the canonical B-DNA structure. Because the balance of the native and spurious conformations is influenced by nonadditive effects, this is a difficult case for an additive dihedral energy scheme such as AMBER. We propose new α/γ parameters, denoted OL21, and show that they improve the stability of native α/γ Z-DNA substates while keeping the canonical DNA description virtually unchanged, thus representing a reasonable compromise within the additive force field framework. Although further extensive testing is needed, the new modification appears to be a promising step toward a more reliable description of noncanonical DNA motifs and provides the best performance for Z-DNA molecules among current AMBER force fields.
- MeSH
- B-DNA chemie MeSH
- konformace nukleové kyseliny MeSH
- simulace molekulární dynamiky MeSH
- Z-DNA * MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Ticks counteract host inflammatory responses by secreting proteins from their saliva that compete for histamine binding. Among these tick salivary proteins are lipocalins, antiparallel beta-barrel proteins that sequester small molecules. A tick salivary lipocalin has been structurally resolved and experimentally shown to efficiently compete for histamine with its native receptor (e.g., H1 histamine receptor). To date, molecular dynamics simulations focus on protein-protein and protein-ligand interactions, but there are currently no studies for simultaneous ligand exploration between two competing proteins. METHODS: Aided by state-of-the-art, high-throughput computational methods, the current study simulated and analyzed the dynamics of competitive histamine binding at the tick-host interface using the available crystal structures of both the tick salivary lipocalin histamine-binding protein from Rhipicephalus appendiculatus and the human histamine receptor 1. RESULTS: The attraction towards the tick salivary lipocalin seems to depend on the protonated (adding a hydrogen ion) state of histamine since the current study shows that as histamine becomes more protonated it increases its exploration for the tick salivary lipocalin. This implies that during tick feeding, histamine may need to be protonated for the tick salivary lipocalin to efficiently sequester it in order to counteract inflammation. Additionally, the beta-hairpin loops (at both ends of the tick salivary lipocalin barrel) were reported to have a functional role in sequestering histamine and the results in the current study concur and provide evidence for this hypothesis. These beta-hairpin loops of the tick salivary lipocalin possess more acidic residues than a structurally similar but functionally unrelated lipocalin from the butterfly, Pieris brassicae; comparative results indicate these acidic residues may be responsible for the ability of the tick lipocalin to out-compete the native (H1) receptor for histamine. CONCLUSIONS: Three explanatory types of data can be obtained from the current study: (i) the dynamics of multiple binding sites, (ii) competition between two proteins for a ligand, and (iii) the intrinsic molecular components involved in the competition. These data can provide further insight at the atomic level of the host-tick interface that cannot be experimentally determined. Additionally, the methods used in this study can be applied in rationally designing drugs.
- MeSH
- histamin metabolismus MeSH
- interakce hostitele a patogenu * MeSH
- kinetika MeSH
- lidé MeSH
- lipokaliny chemie metabolismus MeSH
- molekulární modely MeSH
- receptory histaminu H1 chemie metabolismus MeSH
- Rhipicephalus fyziologie MeSH
- simulace molekulární dynamiky MeSH
- vazba proteinů MeSH
- výpočetní biologie metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Potentiometric and spectrophotometric pH-titration of the multiprotic cytostatics bosutinib for dissociation constants determination were compared. Bosutinib treats patients with positive chronic myeloid leukemia. Bosutinib exhibits four protonatable sites in a pH range from 2 to 11, where two pK are well separated (ΔpK>3), while the other two are near dissociation constants. In the neutral medium, bosutinib occurs in the slightly water soluble form LH that can be protonated to the soluble cation LH4(3+). The molecule LH can be dissociated to still difficultly soluble anion L(-). The set of spectra upon pH from 2 to 11 in the 239.3-375.0nm was divided into two absorption bands: the first one from 239.3 to 290.5nm and the second from 312.3 to 375.0nm, which differ in sensitivity of chromophores to a pH change. Estimates of pK of the entire set of spectra were compared with those of both absorption bands. Due to limited solubility of bosutinib the protonation in a mixed aqueous-methanolic medium was studied. In low methanol content of 3-6% three dissociation constants can be reliably determined with SPECFIT/32 and SQUAD(84) and after extrapolation to zero content of methanol they lead to pKc1=3.43(12), pKc2=4.54(10), pKc3=7.56(07) and pKc4=11.04(05) at 25°C and pKc1=3.44(06), pKc2=5.03(08) pKc3=7.33(05) and pKc4=10.92(06) at 37°C. With an increasing content of methanol in solvent the dissociation of bosutinib is suppressed and the percentage of LH3(2+) decreases and LH prevails. From the potentiometric pH-titration at 25°C the concentration dissociation constants were estimated with ESAB pKc1=3.51(02), pKc2=4.37(02), pKc3=7.97(02) and pKc4=11.05(03) and with HYPERQUAD: pKc1=3.29(12), pKc2=4.24(10), pKc3=7.95(07) and pKc4=11.29(05).
- MeSH
- aniliny analýza chemie MeSH
- chinoliny analýza chemie MeSH
- cytostatické látky analýza chemie MeSH
- koncentrace vodíkových iontů MeSH
- metoda nejmenších čtverců MeSH
- nelineární dynamika * MeSH
- nitrily analýza chemie MeSH
- potenciometrie MeSH
- spektrofotometrie metody MeSH
- Publikační typ
- časopisecké články MeSH
The coarse-grained Martini force field is widely used in biomolecular simulations. Here we present the refined model, Martini 3 ( http://cgmartini.nl ), with an improved interaction balance, new bead types and expanded ability to include specific interactions representing, for example, hydrogen bonding and electronic polarizability. The updated model allows more accurate predictions of molecular packing and interactions in general, which is exemplified with a vast and diverse set of applications, ranging from oil/water partitioning and miscibility data to complex molecular systems, involving protein-protein and protein-lipid interactions and material science applications as ionic liquids and aedamers.
Abstract Aromatic stacking of nucleic acid bases is one of the key players in determining the structure and dynamics of nucleic acids. The arrangement of nucleic acid bases with extensive overlap of their aromatic rings gave rise to numerous often contradictory suggestions about the physical origins of stacking and the possible role of delocalized electrons in stacked aromatic π systems, leading to some confusion about the issue. The recent advance of computer hardware and software finally allowed the application of state of the art quantum-mechanical approaches with inclusion of electron correlation effects to study aromatic base stacking, now providing an ultimitate qualitative description of the phenomenon. Base stacking is determined by an interplay of the three most commonly encountered molecular interactions: dispersion attraction, electrostatic interaction, and short-range repulsion. Unusual (aromatic- stacking specific) energy contributions were in fact not evidenced and are not necessary to describe stacking. The currently used simple empirical potential form, relying on atom-centered constant point charges and Lennard-Jones van der Waals terms, is entirely able to reproduce the essential features of base stacking. Thus, we can conclude that base stacking is in principle one of the best described interactions in current molecular modeling and it allows to study base stacking in DNA using large-scale classical molecular dynamics simulations. Neglect of cooperativity of stacking appears to be the most serious approximation of the currently used force field form. This review summarizes recent developments in the field. It is written for an audience that is not necessarily expert in computational quantum chemistry and follows up on our previous contribution (Sponer et. al., J. Biomol. Struct. Dyn. 14, 117, (1997)). First, the applied methodology, its accuracy, and the physical nature of base stacking is briefly overviewed, including a comment on the accuracy of other molecular orbital methods and force fields. Then, base stacking is contrasted with hydrogen bonding, the other dominant force in nucleic acid structure. The sequence dependence and cooperativity of base stacking is commented on, and finally a brief introduction into recent progress in large-scale molecular dynamics simulations of nucleic acids is provided. Using four stranded DNA assemblies as an example, we demonstrate the efficacy of current molecular dynamics techniques that utilize refined and verified force fields in the study of stacking in nucleic acid molecules.
The mixed dissociation constants of four non-steroidal anti-inflammatory drugs (NSAIDs) ibuprofen, diclofenac sodium, flurbiprofen and ketoprofen at various ionic strengths I of range 0.003-0.155, and at temperatures of 25 degrees C and 37 degrees C, were determined with the use of two different multiwavelength and multivariate treatments of spectral data, SPECFIT/32 and SQUAD(84) nonlinear regression analyses and INDICES factor analysis. The factor analysis in the INDICES program predicts the correct number of components, and even the presence of minor ones, when the data quality is high and the instrumental error is known. The thermodynamic dissociation constant pK(a)(T) was estimated by nonlinear regression of (pK(a), I) data at 25 degrees C and 37 degrees C. Goodness-of-fit tests for various regression diagnostics enabled the reliability of the parameter estimates found to be proven. PALLAS, MARVIN, SPARC, ACD/pK(a) and Pharma Algorithms predict pK(a) being based on the structural formulae of drug compounds in agreement with the experimental value. The best agreement seems to be between the ACD/pK(a) program and experimentally found values and with SPARC. PALLAS and MARVIN predicted pK(a,pred) values with larger bias errors in comparison with the experimental value for all four drugs.
Heteroarylaminoethanol derivates are drugs which affect sympathetic nervous system and are used for medications of hypertension. In solutions they behave like weak bases and their pK(a) values represent important information on their potential biological uptake, pharmacological activity and in vivo biodisponsibility. This article brings the measurement of pK(a) values of the series of seven new important heteroarylaminoethanols, compounds with potential vasodilating, beta-adrenolytic and antioxidant activity, by capillary zone electrophoresis (CZE) with diode-array detection. It has been shown that capillary zone electrophoresis measurements of pK(a) can be easily performed with very small quantities of studied substances, and, due to CZE separation power, the purity of samples is not of key importance. Moreover, the CZE method is fast and reliable, providing that suitable operational conditions are selected. The method is based on the measurement of the effective mobility curves within a suitable pH range and related regression analysis where pK(BH)(+) and electrophoretic mobility of BH(+) are explicitly involved. The selection of sufficient operational buffers is of key importance for accurate and reproducible results, and, this article brings step by step the consideration procedure involved in this process. Further, this paper brings principles of least square regression analysis of non-linear function corresponding to exact explicit formula for mobility curve of monovalent weak base.
- MeSH
- antihypertenziva chemická syntéza chemie MeSH
- chemické modely MeSH
- elektroforéza kapilární MeSH
- ethanolaminy chemická syntéza chemie MeSH
- farmaceutická technologie metody MeSH
- financování organizované MeSH
- koncentrace vodíkových iontů MeSH
- metoda nejmenších čtverců MeSH
- nelineární dynamika MeSH
- osmolární koncentrace MeSH
- pufry MeSH
- reprodukovatelnost výsledků MeSH
The aim of the paper is to develop a procedure for an estimate of an analytical form of a hazard function for cancer patients. Although a deterministic approach based on cancer cell population dynamics yields the analytical expression, it depends on several parameters which should be estimated. On the other hand, a kernel estimate is an effective nonparametric method for estimating hazard functions. This method provides the pointwise estimate of the hazard function. Our procedure consists of two steps: in the first step we find the kernel estimate of the hazard function and in the second step the parameters in the deterministic model are obtained by the least squares method. A simulation study with different types of censorship is carried out and the developed procedure is applied to real data.
- MeSH
- biologické modely MeSH
- databáze faktografické MeSH
- karcinom mortalita patologie terapie MeSH
- lidé MeSH
- metoda nejmenších čtverců MeSH
- nádory prsu mortalita patologie terapie MeSH
- nádory mortalita patologie terapie MeSH
- počítačová simulace MeSH
- pravděpodobnostní funkce MeSH
- proliferace buněk MeSH
- proporcionální rizikové modely MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
This work extends the multi-scale computational scheme for the quantum mechanics (QM) calculations of Nuclear Magnetic Resonance (NMR) chemical shifts (CSs) in proteins that lack a well-defined 3D structure. The scheme couples the sampling of an intrinsically disordered protein (IDP) by classical molecular dynamics (MD) with protein fragmentation using the adjustable density matrix assembler (ADMA) and density functional theory (DFT) calculations. In contrast to our early investigation on IDPs (Pavlíková Přecechtělová et al., J. Chem. Theory Comput., 2019, 15, 5642-5658) and the state-of-the art NMR calculations for structured proteins, a partial re-optimization was implemented on the raw MD geometries in vibrational normal mode coordinates to enhance the accuracy of the MD/ADMA/DFT computational scheme. In addition, machine-learning based cluster analysis was performed on the scheme to explore its potential in producing protein structure ensembles (CLUSTER ensembles) that yield accurate CSs at a reduced computational cost. The performance of the cluster-based calculations is validated against results obtained with conventional structural ensembles consisting of MD snapshots extracted from the MD trajectory at regular time intervals (REGULAR ensembles). CS calculations performed with the refined MD/ADMA/DFT framework employed the 6-311++G(d,p) basis set that outperformed IGLO-III calculations with the same density functional approximation (B3LYP) and both explicit and implicit solvation. The partial geometry optimization did not universally improve the agreement of computed CSs with the experiment but substantially decreased errors associated with the ensemble averaging. A CLUSTER ensemble with 50 structures yielded ensemble averages close to those obtained with a REGULAR ensemble consisting of 500 MD frames. The cluster based calculations thus required only a fraction of the computational time.
Determination of RNA structural-dynamic properties is challenging for experimental methods. Thus, atomistic molecular dynamics (MD) simulations represent a helpful technique complementary to experiments. However, contemporary MD methods still suffer from limitations of force fields (ffs), including imbalances in the nonbonded ff terms. We have recently demonstrated that some improvement of state-of-the-art AMBER RNA ff can be achieved by adding a new term for H-bonding called gHBfix, which increases tuning flexibility and reduces risk of side-effects. Still, the first gHBfix version did not fully correct simulations of short RNA tetranucleotides (TNs). TNs are key benchmark systems due to availability of unique NMR data, although giving too much weight on improving TN simulations can easily lead to overfitting to A-form RNA. Here we combine the gHBfix version with another term called tHBfix, which separately treats H-bond interactions formed by terminal nucleotides. This allows to refine simulations of RNA TNs without affecting simulations of other RNAs. The approach is in line with adopted strategy of current RNA ffs, where the terminal nucleotides possess different parameters for terminal atoms than the internal nucleotides. Combination of gHBfix with tHBfix significantly improves the behavior of RNA TNs during well-converged enhanced-sampling simulations using replica exchange with solute tempering. TNs mostly populate canonical A-form like states while spurious intercalated structures are largely suppressed. Still, simulations of r(AAAA) and r(UUUU) TNs show some residual discrepancies with primary NMR data which suggests that future tuning of some other ff terms might be useful. Nevertheless, the tHBfix has a clear potential to improve modeling of key biochemical processes, where interactions of RNA single stranded ends are involved.
- MeSH
- konformace nukleové kyseliny MeSH
- lidé MeSH
- nukleotidy chemie MeSH
- RNA chemie MeSH
- simulace molekulární dynamiky normy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH