Scintillation Response Enhancement in Nanocrystalline Lead Halide Perovskite Thin Films on Scintillating Wafers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA20-06374S
Czech Science Foundation
CZ.02.1.01/0.0/0.0/16_019/0000778
Ministry of Education Youth and Sports
SGS20/185/OHK4/3T/14
Czech Technical University in Prague
PubMed
35009964
PubMed Central
PMC8746850
DOI
10.3390/nano12010014
PII: nano12010014
Knihovny.cz E-zdroje
- Klíčová slova
- TOF-PET, fast timing, heterostructure, lead halide perovskites, nanocrystals, scintillator, thin films,
- Publikační typ
- časopisecké články MeSH
Lead halide perovskite nanocrystals of the formula CsPbBr3 have recently been identified as potential time taggers in scintillating heterostructures for time-of-flight positron emission tomography (TOF-PET) imaging thanks to their ultrafast decay kinetics. This study investigates the potential of this material experimentally. We fabricated CsPbBr3 thin films on scintillating GGAG:Ce (Gd2.985Ce0.015Ga2.7Al2.3O12) wafer as a model structure for the future sampling detector geometry. We focused this study on the radioluminescence (RL) response of this composite material. We compare the results of two spin-coating methods, namely the static and the dynamic process, for the thin film preparation. We demonstrated enhanced RL intensity of both CsPbBr3 and GGAG:Ce scintillating constituents of a composite material. This synergic effect arises in both the RL spectra and decays, including decays in the short time window (50 ns). Consequently, this study confirms the applicability of CsPbBr3 nanocrystals as efficient time taggers for ultrafast timing applications, such as TOF-PET.
Zobrazit více v PubMed
Nikl M., Nitsch K., Polak K., Pazzi G.P., Fabeni P., Citrin D.S., Gurioli M. Optical properties of the Pb2+-based aggregated phase in a CsCl host crystal: Quantum-confinement effects. Phys. Rev. B. 1995;51:5192–5199. doi: 10.1103/PhysRevB.51.5192. PubMed DOI
Nikl M., Nitsch K., Mihóková E., Polák K., Fabeni P., Pazzi G.P., Gurioli M., Santucci S., Phani R., Scacco A., et al. Luminescence of CsPbBr3-like quantum dots in CsBr single crystals. Phys. E Low-Dimens. Syst. Nanostruct. 1999;4:323–331. doi: 10.1016/S1386-9477(99)00016-8. DOI
Babin V., Fabeni P., Nikl M., Nitsch K., Pazzi G.P., Zazubovich S. Luminescent CsPbI3 and Cs4PbI6 Aggregates in Annealed CsI:Pb Crystals. Phys. Status Solidi. 2001;226:419–428. doi: 10.1002/1521-3951(200108)226:2<419::AID-PSSB419>3.0.CO;2-C. DOI
Protesescu L., Yakunin S., Bodnarchuk M.I., Krieg F., Caputo R., Hendon C.H., Yang R.X., Walsh A., Kovalenko M.V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015;15:3692–3696. doi: 10.1021/nl5048779. PubMed DOI PMC
Song J., Li J., Li X., Xu L., Dong Y., Zeng H. Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3) Adv. Mater. 2015;27:7162–7167. doi: 10.1002/adma.201502567. PubMed DOI
Wang Y., Zhang T., Kan M., Zhao Y. Bifunctional Stabilization of All-Inorganic α-CsPbI3 Perovskite for 17% Efficiency Photovoltaics. J. Am. Chem. Soc. 2018;140:12345–12348. doi: 10.1021/jacs.8b07927. PubMed DOI
Swarnkar A., Chulliyil R., Ravi V.K., Irfanullah M., Chowdhury A., Nag A. Colloidal CsPbBr3 Perovskite Nanocrystals: Luminescence beyond Traditional Quantum Dots. Angew. Chem. Int. Ed. 2015;54:15424–15428. doi: 10.1002/anie.201508276. PubMed DOI
Gandini M., Villa I., Beretta M., Gotti C., Imran M., Carulli F., Fantuzzi E., Sassi M., Zaffalon M., Brofferio C., et al. Efficient, fast and reabsorption-free perovskite nanocrystal-based sensitized plastic scintillators. Nat. Nanotechnol. 2020;15:462–468. doi: 10.1038/s41565-020-0683-8. PubMed DOI
Zhang Y., Sun R., Ou X., Fu K., Chen Q., Ding Y., Xu L.-J., Liu L., Han Y., Malko A.V., et al. Metal Halide Perovskite Nanosheet for X-ray High-Resolution Scintillation Imaging Screens. ACS Nano. 2019;13:2520–2525. doi: 10.1021/acsnano.8b09484. PubMed DOI
Chen Q., Wu J., Ou X., Huang B., Almutlaq J., Zhumekenov A.A., Guan X., Han S., Liang L., Yi Z., et al. All-inorganic perovskite nanocrystal scintillators. Nature. 2018;561:88–93. doi: 10.1038/s41586-018-0451-1. PubMed DOI
Mykhaylyk V.B., Kraus H., Kapustianyk V., Kim H.J., Mercere P., Rudko M., Da Silva P., Antonyak O., Dendebera M. Bright and fast scintillations of an inorganic halide perovskite CsPbBr3 crystal at cryogenic temperatures. Sci. Rep. 2020;10:8601. doi: 10.1038/s41598-020-65672-z. PubMed DOI PMC
Li Y., Shao W., Chen L., Wang J., Nie J., Zhang H., Zhang S., Gao R., Ouyang X., Ouyang X., et al. Lead-halide Cs4PbBr6 single crystals for high-sensitivity radiation detection. NPG Asia Mater. 2021;13:40. doi: 10.1038/s41427-021-00308-w. DOI
Moseley O.D.I., Doherty T.A.S., Parmee R., Anaya M., Stranks S.D. Halide perovskites scintillators: Unique promise and current limitations. J. Mater. Chem. C. 2021;9:11588–11604. doi: 10.1039/D1TC01595H. PubMed DOI PMC
Yang H., Li H., Yuan R., Chen J., Zhao J., Wang S., Liu Y., Li Q., Zhang Z. A novel scintillation screen for achieving high-energy ray detection with fast and full-color emission. J. Mater. Chem. C. 2021;9:7905–7909. doi: 10.1039/D1TC01318A. DOI
Maddalena F., Xie A., Chin X.Y., Begum R., Witkowski M.E., Makowski M., Mahler B., Drozdowski W., Springham S.V., Rawat R.S., et al. Deterministic Light Yield, Fast Scintillation, and Microcolumn Structures in Lead Halide Perovskite Nanocrystals. J. Phys. Chem. C. 2021;125:14082–14088. doi: 10.1021/acs.jpcc.1c03392. DOI
Liu C., Li Z., Hajagos T.J., Kishpaugh D., Chen D.Y., Pei Q. Transparent Ultra-High-Loading Quantum Dot/Polymer Nanocomposite Monolith for Gamma Scintillation. ACS Nano. 2017;11:6422–6430. doi: 10.1021/acsnano.7b02923. PubMed DOI
Turtos R.M., Gundacker S., Omelkov S., Mahler B., Khan A.H., Saaring J., Meng Z., Vasil’ev A., Dujardin C., Kirm M., et al. On the use of CdSe scintillating nanoplatelets as time taggers for high-energy gamma detection. Npj 2D Mater. Appl. 2019;3:37. doi: 10.1038/s41699-019-0120-8. DOI
Lecoq P., Morel C., Prior J.O., Visvikis D., Gundacker S., Auffray E., Križan P., Turtos R.M., Thers D., Charbon E., et al. Roadmap toward the 10 ps time-of-flight PET challenge. Phys. Med. Biol. 2020;65:21RM01. doi: 10.1088/1361-6560/ab9500. PubMed DOI PMC
Kamada K., Kurosawa S., Prusa P., Nikl M., Kochurikhin V.V., Endo T., Tsutumi K., Sato H., Yokota Y., Sugiyama K., et al. Cz grown 2-in. size Ce:Gd3(Al,Ga)5O12 single crystal; Relationship between Al, Ga site occupancy and scintillation properties. Opt. Mater. 2014;36:1942–1945. doi: 10.1016/j.optmat.2014.04.001. DOI
Yokota Y., Kudo T., Ohashi Y., Kurosawa S., Kamada K., Zeng Z., Kawazoe Y., Yoshikawa A. Effects of dopant distribution improvement on optical and scintillation properties for Ce-doped garnet-type single crystals. J. Mater. Sci. Mater. Electron. 2017;28:7151–7156. doi: 10.1007/s10854-017-6696-x. DOI
Lu C., Wright M.W., Ma X., Li H., Itanze D.S., Carter J.A., Hewitt C.A., Donati G.L., Carroll D.L., Lundin P.M., et al. Cesium Oleate Precursor Preparation for Lead Halide Perovskite Nanocrystal Synthesis: The Influence of Excess Oleic Acid on Achieving Solubility, Conversion, and Reproducibility. Chem. Mater. 2019;31:62–67. doi: 10.1021/acs.chemmater.8b04876. DOI
Děcká K., Suchá A., Král J., Jakubec I., Nikl M., Jarý V., Babin V., Mihóková E., Čuba V. On the role of Cs4PbBr6 phase in the luminescence performance of bright CsPbBr3 nanocrystals. Nanomaterials. 2021;11:1935. doi: 10.3390/nano11081935. PubMed DOI PMC
Imran M., Ijaz P., Goldoni L., Maggioni D., Petralanda U., Prato M., Almeida G., Infante I., Manna L. Simultaneous cationic and anionic ligand exchange for colloidally stable CsPbBr3 nanocrystals. ACS Energy Lett. 2019;4:819–824. doi: 10.1021/acsenergylett.9b00140. DOI
Maes J., Balcaen L., Drijvers E., Zhao Q., De Roo J., Vantomme A., Vanhaecke F., Geiregat P., Hens Z. Light Absorption Coefficient of CsPbBr3 Perovskite Nanocrystals. J. Phys. Chem. Lett. 2018;9:3093–3097. doi: 10.1021/acs.jpclett.8b01065. PubMed DOI
Jing Q., Xu Y., Su Y., Xing X., Lu Z. A systematic study of the synthesis of cesium lead halide nanocrystals: Does Cs4PbBr6 or CsPbBr3 form? Nanoscale. 2019;11:1784–1789. doi: 10.1039/C8NR08116F. PubMed DOI
Cao F., Yu D., Xu X., Han Z., Zeng H. CsPbBr3@Cs4PbBr6 Emitter-in-Host Composite: Fluorescence Origin and Interphase Energy Transfer. J. Phys. Chem. C. 2021;125:3–19. doi: 10.1021/acs.jpcc.0c08100. DOI
Prusa P., Nikl M., Mares J.A., Kucera M., Nitsch K., Beitlerova A. The α-particle excited scintillation response of YAG:Ce thin films grown by liquid phase epitaxy. Phys. Status Solidi Appl. Mater. Sci. 2009;206:1494–1500. doi: 10.1002/pssa.200825050. DOI
Salomoni M., Pots R., Auffray E., Lecoq P. Enhancing light extraction of inorganic scintillators using photonic crystals. Crystals. 2018;8:78. doi: 10.3390/cryst8020078. DOI
Berger M.J., Hubbell J.H., Seltzer S.M., Chang J., Coursey J.S., Sukumar R., Zucker D.S., Olsen K. XCOM: Photon Cross Section Database (Version 1.5) National Institute of Standards and Technology; Gaithersburg, MD, USA: 2010. [(accessed on 9 November 2021)]. Available online: http://physics.nist.gov/xcom.