Scintillation Response Enhancement in Nanocrystalline Lead Halide Perovskite Thin Films on Scintillating Wafers

. 2021 Dec 21 ; 12 (1) : . [epub] 20211221

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35009964

Grantová podpora
GA20-06374S Czech Science Foundation
CZ.02.1.01/0.0/0.0/16_019/0000778 Ministry of Education Youth and Sports
SGS20/185/OHK4/3T/14 Czech Technical University in Prague

Lead halide perovskite nanocrystals of the formula CsPbBr3 have recently been identified as potential time taggers in scintillating heterostructures for time-of-flight positron emission tomography (TOF-PET) imaging thanks to their ultrafast decay kinetics. This study investigates the potential of this material experimentally. We fabricated CsPbBr3 thin films on scintillating GGAG:Ce (Gd2.985Ce0.015Ga2.7Al2.3O12) wafer as a model structure for the future sampling detector geometry. We focused this study on the radioluminescence (RL) response of this composite material. We compare the results of two spin-coating methods, namely the static and the dynamic process, for the thin film preparation. We demonstrated enhanced RL intensity of both CsPbBr3 and GGAG:Ce scintillating constituents of a composite material. This synergic effect arises in both the RL spectra and decays, including decays in the short time window (50 ns). Consequently, this study confirms the applicability of CsPbBr3 nanocrystals as efficient time taggers for ultrafast timing applications, such as TOF-PET.

Zobrazit více v PubMed

Nikl M., Nitsch K., Polak K., Pazzi G.P., Fabeni P., Citrin D.S., Gurioli M. Optical properties of the Pb2+-based aggregated phase in a CsCl host crystal: Quantum-confinement effects. Phys. Rev. B. 1995;51:5192–5199. doi: 10.1103/PhysRevB.51.5192. PubMed DOI

Nikl M., Nitsch K., Mihóková E., Polák K., Fabeni P., Pazzi G.P., Gurioli M., Santucci S., Phani R., Scacco A., et al. Luminescence of CsPbBr3-like quantum dots in CsBr single crystals. Phys. E Low-Dimens. Syst. Nanostruct. 1999;4:323–331. doi: 10.1016/S1386-9477(99)00016-8. DOI

Babin V., Fabeni P., Nikl M., Nitsch K., Pazzi G.P., Zazubovich S. Luminescent CsPbI3 and Cs4PbI6 Aggregates in Annealed CsI:Pb Crystals. Phys. Status Solidi. 2001;226:419–428. doi: 10.1002/1521-3951(200108)226:2<419::AID-PSSB419>3.0.CO;2-C. DOI

Protesescu L., Yakunin S., Bodnarchuk M.I., Krieg F., Caputo R., Hendon C.H., Yang R.X., Walsh A., Kovalenko M.V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015;15:3692–3696. doi: 10.1021/nl5048779. PubMed DOI PMC

Song J., Li J., Li X., Xu L., Dong Y., Zeng H. Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3) Adv. Mater. 2015;27:7162–7167. doi: 10.1002/adma.201502567. PubMed DOI

Wang Y., Zhang T., Kan M., Zhao Y. Bifunctional Stabilization of All-Inorganic α-CsPbI3 Perovskite for 17% Efficiency Photovoltaics. J. Am. Chem. Soc. 2018;140:12345–12348. doi: 10.1021/jacs.8b07927. PubMed DOI

Swarnkar A., Chulliyil R., Ravi V.K., Irfanullah M., Chowdhury A., Nag A. Colloidal CsPbBr3 Perovskite Nanocrystals: Luminescence beyond Traditional Quantum Dots. Angew. Chem. Int. Ed. 2015;54:15424–15428. doi: 10.1002/anie.201508276. PubMed DOI

Gandini M., Villa I., Beretta M., Gotti C., Imran M., Carulli F., Fantuzzi E., Sassi M., Zaffalon M., Brofferio C., et al. Efficient, fast and reabsorption-free perovskite nanocrystal-based sensitized plastic scintillators. Nat. Nanotechnol. 2020;15:462–468. doi: 10.1038/s41565-020-0683-8. PubMed DOI

Zhang Y., Sun R., Ou X., Fu K., Chen Q., Ding Y., Xu L.-J., Liu L., Han Y., Malko A.V., et al. Metal Halide Perovskite Nanosheet for X-ray High-Resolution Scintillation Imaging Screens. ACS Nano. 2019;13:2520–2525. doi: 10.1021/acsnano.8b09484. PubMed DOI

Chen Q., Wu J., Ou X., Huang B., Almutlaq J., Zhumekenov A.A., Guan X., Han S., Liang L., Yi Z., et al. All-inorganic perovskite nanocrystal scintillators. Nature. 2018;561:88–93. doi: 10.1038/s41586-018-0451-1. PubMed DOI

Mykhaylyk V.B., Kraus H., Kapustianyk V., Kim H.J., Mercere P., Rudko M., Da Silva P., Antonyak O., Dendebera M. Bright and fast scintillations of an inorganic halide perovskite CsPbBr3 crystal at cryogenic temperatures. Sci. Rep. 2020;10:8601. doi: 10.1038/s41598-020-65672-z. PubMed DOI PMC

Li Y., Shao W., Chen L., Wang J., Nie J., Zhang H., Zhang S., Gao R., Ouyang X., Ouyang X., et al. Lead-halide Cs4PbBr6 single crystals for high-sensitivity radiation detection. NPG Asia Mater. 2021;13:40. doi: 10.1038/s41427-021-00308-w. DOI

Moseley O.D.I., Doherty T.A.S., Parmee R., Anaya M., Stranks S.D. Halide perovskites scintillators: Unique promise and current limitations. J. Mater. Chem. C. 2021;9:11588–11604. doi: 10.1039/D1TC01595H. PubMed DOI PMC

Yang H., Li H., Yuan R., Chen J., Zhao J., Wang S., Liu Y., Li Q., Zhang Z. A novel scintillation screen for achieving high-energy ray detection with fast and full-color emission. J. Mater. Chem. C. 2021;9:7905–7909. doi: 10.1039/D1TC01318A. DOI

Maddalena F., Xie A., Chin X.Y., Begum R., Witkowski M.E., Makowski M., Mahler B., Drozdowski W., Springham S.V., Rawat R.S., et al. Deterministic Light Yield, Fast Scintillation, and Microcolumn Structures in Lead Halide Perovskite Nanocrystals. J. Phys. Chem. C. 2021;125:14082–14088. doi: 10.1021/acs.jpcc.1c03392. DOI

Liu C., Li Z., Hajagos T.J., Kishpaugh D., Chen D.Y., Pei Q. Transparent Ultra-High-Loading Quantum Dot/Polymer Nanocomposite Monolith for Gamma Scintillation. ACS Nano. 2017;11:6422–6430. doi: 10.1021/acsnano.7b02923. PubMed DOI

Turtos R.M., Gundacker S., Omelkov S., Mahler B., Khan A.H., Saaring J., Meng Z., Vasil’ev A., Dujardin C., Kirm M., et al. On the use of CdSe scintillating nanoplatelets as time taggers for high-energy gamma detection. Npj 2D Mater. Appl. 2019;3:37. doi: 10.1038/s41699-019-0120-8. DOI

Lecoq P., Morel C., Prior J.O., Visvikis D., Gundacker S., Auffray E., Križan P., Turtos R.M., Thers D., Charbon E., et al. Roadmap toward the 10 ps time-of-flight PET challenge. Phys. Med. Biol. 2020;65:21RM01. doi: 10.1088/1361-6560/ab9500. PubMed DOI PMC

Kamada K., Kurosawa S., Prusa P., Nikl M., Kochurikhin V.V., Endo T., Tsutumi K., Sato H., Yokota Y., Sugiyama K., et al. Cz grown 2-in. size Ce:Gd3(Al,Ga)5O12 single crystal; Relationship between Al, Ga site occupancy and scintillation properties. Opt. Mater. 2014;36:1942–1945. doi: 10.1016/j.optmat.2014.04.001. DOI

Yokota Y., Kudo T., Ohashi Y., Kurosawa S., Kamada K., Zeng Z., Kawazoe Y., Yoshikawa A. Effects of dopant distribution improvement on optical and scintillation properties for Ce-doped garnet-type single crystals. J. Mater. Sci. Mater. Electron. 2017;28:7151–7156. doi: 10.1007/s10854-017-6696-x. DOI

Lu C., Wright M.W., Ma X., Li H., Itanze D.S., Carter J.A., Hewitt C.A., Donati G.L., Carroll D.L., Lundin P.M., et al. Cesium Oleate Precursor Preparation for Lead Halide Perovskite Nanocrystal Synthesis: The Influence of Excess Oleic Acid on Achieving Solubility, Conversion, and Reproducibility. Chem. Mater. 2019;31:62–67. doi: 10.1021/acs.chemmater.8b04876. DOI

Děcká K., Suchá A., Král J., Jakubec I., Nikl M., Jarý V., Babin V., Mihóková E., Čuba V. On the role of Cs4PbBr6 phase in the luminescence performance of bright CsPbBr3 nanocrystals. Nanomaterials. 2021;11:1935. doi: 10.3390/nano11081935. PubMed DOI PMC

Imran M., Ijaz P., Goldoni L., Maggioni D., Petralanda U., Prato M., Almeida G., Infante I., Manna L. Simultaneous cationic and anionic ligand exchange for colloidally stable CsPbBr3 nanocrystals. ACS Energy Lett. 2019;4:819–824. doi: 10.1021/acsenergylett.9b00140. DOI

Maes J., Balcaen L., Drijvers E., Zhao Q., De Roo J., Vantomme A., Vanhaecke F., Geiregat P., Hens Z. Light Absorption Coefficient of CsPbBr3 Perovskite Nanocrystals. J. Phys. Chem. Lett. 2018;9:3093–3097. doi: 10.1021/acs.jpclett.8b01065. PubMed DOI

Jing Q., Xu Y., Su Y., Xing X., Lu Z. A systematic study of the synthesis of cesium lead halide nanocrystals: Does Cs4PbBr6 or CsPbBr3 form? Nanoscale. 2019;11:1784–1789. doi: 10.1039/C8NR08116F. PubMed DOI

Cao F., Yu D., Xu X., Han Z., Zeng H. CsPbBr3@Cs4PbBr6 Emitter-in-Host Composite: Fluorescence Origin and Interphase Energy Transfer. J. Phys. Chem. C. 2021;125:3–19. doi: 10.1021/acs.jpcc.0c08100. DOI

Prusa P., Nikl M., Mares J.A., Kucera M., Nitsch K., Beitlerova A. The α-particle excited scintillation response of YAG:Ce thin films grown by liquid phase epitaxy. Phys. Status Solidi Appl. Mater. Sci. 2009;206:1494–1500. doi: 10.1002/pssa.200825050. DOI

Salomoni M., Pots R., Auffray E., Lecoq P. Enhancing light extraction of inorganic scintillators using photonic crystals. Crystals. 2018;8:78. doi: 10.3390/cryst8020078. DOI

Berger M.J., Hubbell J.H., Seltzer S.M., Chang J., Coursey J.S., Sukumar R., Zucker D.S., Olsen K. XCOM: Photon Cross Section Database (Version 1.5) National Institute of Standards and Technology; Gaithersburg, MD, USA: 2010. [(accessed on 9 November 2021)]. Available online: http://physics.nist.gov/xcom.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Ionisation of atoms determined by kappa refinement against 3D electron diffraction data

. 2024 Oct 21 ; 15 (1) : 9066. [epub] 20241021

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...